English

Dx + Xdy = E−Y Sec2 Y Dy - Mathematics

Advertisements
Advertisements

Question

dx + xdy = e−y sec2 y dy

Sum

Solution

We have,
\[dx + \text{ x }dy = e^{- y} \sec^2 \text{ y  }dy\]
\[ \Rightarrow dx = e^{- y} \sec^2 \text{ y } dy - \text{ x } dy\]
\[ \Rightarrow \frac{dx}{dy} = e^{- y} \sec^2 y - x\]
\[ \Rightarrow \frac{dx}{dy} + x = e^{- y} \sec^2 y . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form 
\[\frac{dx}{dy} + Px = Q\]
where
\[P = 1\]
\[Q = e^{- y} \sec^2 y\]
\[ \therefore I.F. = e^{\int P\ dy} \]
\[ = e^{\int dy} \]
\[ = e^y \]
\[\text{Multiplying both sides of }\left( 1 \right)\text{ by }e^y ,\text{ we get }\]
\[ e^y \left( \frac{dx}{dy} + x \right) = e^y e^{- y} \sec^2 y\]
\[ \Rightarrow e^y \frac{dx}{dy} + x e^y = \sec^2 y\]
Integrating both sides with respect to y, we get
\[x e^y = \int \sec^2 y\text{ dy } + C\]
\[ \Rightarrow x e^y = \tan y + C\]
\[\text{ Hence, } \text{ x }e^y = \tan y + C\text{ is the required solution.} \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.10 [Page 106]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.10 | Q 26 | Page 106

RELATED QUESTIONS

For the differential equation, find the general solution:

`dy/dx  + 2y = sin x`


For the differential equation, find the general solution:

`dy/dx + 3y = e^(-2x)`


For the differential equation, find the general solution:

`x log x dy/dx + y=    2/x log x`


For the differential equation, find the general solution:

`x dy/dx + y - x + xy cot x = 0(x != 0)`


For the differential equation, find the general solution:

y dx + (x – y2) dy = 0


For the differential equation, find the general solution:

`(x + 3y^2) dy/dx = y(y > 0)`


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx - 3ycotx = sin 2x; y = 2`  when `x = pi/2`


Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.


Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`


\[\frac{dy}{dx} + y \tan x = x^2 \cos^2 x\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = e^{tan^{- 1} x}\]

x dy = (2y + 2x4 + x2) dx


\[y^2 \frac{dx}{dy} + x - \frac{1}{y} = 0\]

 


\[\left( 2x - 10 y^3 \right)\frac{dy}{dx} + y = 0\]

\[\frac{dy}{dx} + 2y = x e^{4x}\]

Find the general solution of the differential equation \[x\frac{dy}{dx} + 2y = x^2\]


Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]


Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].


Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .


Solve the following differential equation:-
\[\left( 1 + x^2 \right)\frac{dy}{dx} - 2xy = \left( x^2 + 2 \right)\left( x^2 + 1 \right)\]


Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` . 


Solve the differential equation: (1 +x) dy + 2xy dx = cot x dx 


If f(x) = x + 1, find `"d"/"dx"("fof") ("x")`


Solve the following differential equation:

`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`


Solve the following differential equation:

`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`


Solve the following differential equation:

`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`


Solve the following differential equation:

y dx + (x - y2) dy = 0


Solve the following differential equation:

`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`


Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.


The integrating factor of the differential equation sin y `("dy"/"dx")` = cos y(1 - x cos y) is ______.


Integrating factor of the differential equation `(1 - x^2) ("d"y)/("d"x) - xy` = 1 is ______.


Let y = y(x) be the solution curve of the differential equation `(dy)/(dx) + ((2x^2 + 11x + 13)/(x^3 + 6x^2 + 11x + 6)) y = ((x + 3))/(x + 1), x > - 1`, which passes through the point (0, 1). Then y(1) is equal to ______.


If sin x is the integrating factor (IF) of the linear differential equation `dy/dx + Py` = Q then P is ______.


Solve the differential equation `dy/dx+2xy=x` by completing the following activity.

Solution: `dy/dx+2xy=x`       ...(1)

This is the linear differential equation of the form `dy/dx +Py =Q,"where"`

`P=square` and Q = x

∴ `I.F. = e^(intPdx)=square`

The solution of (1) is given by

`y.(I.F.)=intQ(I.F.)dx+c=intsquare  dx+c`

∴ `ye^(x^2) = square`

This is the general solution.


If sec x + tan x is the integrating factor of `dy/dx + Py` = Q, then value of P is ______.


The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×