English

For the differential equation, find the general solution: dydx+3y=e-2x - Mathematics

Advertisements
Advertisements

Question

For the differential equation, find the general solution:

`dy/dx + 3y = e^(-2x)`

Sum

Solution

`dy/dx + 3y = e^(- 2x)`    ...(i)

This is a linear differential equation of the form `dy/dx Py = Q` Here

P = 3 and Q = e-2x 

∴ I.F. = `e^(int P dx) = e^(int 3 dx) = e^(3x)`

The general solution of the fundamental equation,

y(I.F.) = ∫ Q × I.F. dx + C

ye3x = ∫ e-2x · e3x + C

ye3x = ∫ ex + C

ye3x = ex + C

y = e-2x + Ce-3x

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise 9.6 [Page 413]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise 9.6 | Q 2 | Page 413

RELATED QUESTIONS

For the differential equation, find the general solution:

`dy/dx + y/x = x^2`


For the differential equation, find the general solution:

`x dy/dx +  2y= x^2 log x`


For the differential equation, find the general solution:

`x log x dy/dx + y=    2/x log x`


For the differential equation, find the general solution:

(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)


For the differential equation, find the general solution:

`(x + y) dy/dx = 1`


For the differential equation, find the general solution:

y dx + (x – y2) dy = 0


For the differential equation, find the general solution:

`(x + 3y^2) dy/dx = y(y > 0)`


Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`


Find the general solution of the differential equation `dy/dx - y = sin x`


Solve the differential equation `x dy/dx + y = x cos x + sin x`,  given that y = 1 when `x = pi/2`


\[y^2 \frac{dx}{dy} + x - \frac{1}{y} = 0\]

 


\[\left( x^2 - 1 \right)\frac{dy}{dx} + 2\left( x + 2 \right)y = 2\left( x + 1 \right)\]

Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]


Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]


Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].


Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .


Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` . 


Solve the following differential equation:

`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`


Solve the following differential equation dr + (2r cot θ + sin 2θ) dθ = 0.


Solve the following differential equation:

`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`


Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.


Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.


`(x + 2y^3 ) dy/dx = y`


Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.

Solution: The equation `("d"y)/("d"x) - y` = 2x

is of the form `("d"y)/("d"x) + "P"y` = Q

where P = `square` and Q = `square`

∴ I.F. = `"e"^(int-"d"x)` = e–x

∴ the solution of the linear differential equation is

ye–x = `int 2x*"e"^-x  "d"x + "c"`

∴ ye–x  = `2int x*"e"^-x  "d"x + "c"`

= `2{x int"e"^-x "d"x - int square  "d"x* "d"/("d"x) square"d"x} + "c"`

= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`

∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`

∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`

∴ `y + square + square` = cex is the required general solution of the given differential equation


The solution of `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0 is ______.


The equation x2 + yx2 + x + y = 0 represents


The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is


The integrating factor of differential equation `(1 - y)^2  (dx)/(dy) + yx = ay(-1 < y < 1)`


Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.


Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.


The solution of the differential equation `dx/dt = (xlogx)/t` is ______.


Solve the differential equation `dy/dx+2xy=x` by completing the following activity.

Solution: `dy/dx+2xy=x`       ...(1)

This is the linear differential equation of the form `dy/dx +Py =Q,"where"`

`P=square` and Q = x

∴ `I.F. = e^(intPdx)=square`

The solution of (1) is given by

`y.(I.F.)=intQ(I.F.)dx+c=intsquare  dx+c`

∴ `ye^(x^2) = square`

This is the general solution.


If sec x + tan x is the integrating factor of `dy/dx + Py` = Q, then value of P is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×