English

For the differential equation, find the general solution: (x+y)dydx=1 - Mathematics

Advertisements
Advertisements

Question

For the differential equation, find the general solution:

`(x + y) dy/dx = 1`

Sum

Solution

Differential equations,

`(x + y) dy/dx = 1`

`therefore dx/dy = x + y`

or `dx/dy - x = y`

Comparing with the differential equation, `dx/dy + Px = Q`,

P = -1, Q = y

`I.F. = e^(int P dx) = e^(int (- 1)dy) = e^(- y)`

The solution of the differential equation is:

`x × I.F. = int Q xx I.F. dy + C`

`=> x xx e^(- y) = int y * e^(- y) dy + C`

On integrating piecewise,

`xe^(- y) = y (e^(- y)/(-1)) - int 1((e^(- y))/(-1)) dy + C`

`= - ye^(- y) + e^(-y)/(- 1) dy + C`

`= - ye^-y - e^(- y) + C`

or x = - y - 1 + Cey

∴ x + y + 1 = Cey

This is the desired solution.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise 9.6 [Page 414]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise 9.6 | Q 10 | Page 414

RELATED QUESTIONS

For the differential equation, find the general solution:

`x dy/dx +  2y= x^2 log x`


For the differential equation, find the general solution:

`x log x dy/dx + y=    2/x log x`


For the differential equation, find the general solution:

`x dy/dx + y - x + xy cot x = 0(x != 0)`


For the differential equation given, find a particular solution satisfying the given condition:

`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0`  when x = 1


The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.


The integrating factor of the differential equation.

`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.


Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`


Find the general solution of the differential equation `dy/dx - y = sin x`


Solve the differential equation `x dy/dx + y = x cos x + sin x`,  given that y = 1 when `x = pi/2`


\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = e^{tan^{- 1} x}\]

dx + xdy = e−y sec2 y dy


\[\frac{dy}{dx}\] + y cos x = sin x cos x


\[\frac{dy}{dx} + 2y = x e^{4x}\]

Find the general solution of the differential equation \[x\frac{dy}{dx} + 2y = x^2\]


Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .


Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.


Solve the following differential equation:

`"dy"/"dx" + "y"/"x" = "x"^3 - 3`


Solve the following differential equation:

`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`


Solve the following differential equation:

`("x" + 2"y"^3) "dy"/"dx" = "y"`


Solve the following differential equation:

`"dy"/"dx" + "y" * sec "x" = tan "x"`


Solve the following differential equation:

`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`


Solve the following differential equation:

y dx + (x - y2) dy = 0


Solve the following differential equation:

`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`


Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.


The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.


Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.


The integrating factor of `(dy)/(dx) + y` = e–x is ______.


Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.

Solution: The equation `("d"y)/("d"x) - y` = 2x

is of the form `("d"y)/("d"x) + "P"y` = Q

where P = `square` and Q = `square`

∴ I.F. = `"e"^(int-"d"x)` = e–x

∴ the solution of the linear differential equation is

ye–x = `int 2x*"e"^-x  "d"x + "c"`

∴ ye–x  = `2int x*"e"^-x  "d"x + "c"`

= `2{x int"e"^-x "d"x - int square  "d"x* "d"/("d"x) square"d"x} + "c"`

= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`

∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`

∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`

∴ `y + square + square` = cex is the required general solution of the given differential equation


Integrating factor of `dy/dx + y = x^2 + 5` is ______ 


The integrating factor of differential equation `(1 - y)^2  (dx)/(dy) + yx = ay(-1 < y < 1)`


If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.


If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.


Find the general solution of the differential equation:

`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`


If sec x + tan x is the integrating factor of `dy/dx + Py` = Q, then value of P is ______.


Solve:

`xsinx dy/dx + (xcosx + sinx)y` = sin x


The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×