English

Find the general solution of the differential equation: (x2+1)dydx+2xy=x2+4 - Mathematics

Advertisements
Advertisements

Question

Find the general solution of the differential equation:

`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`

Sum

Solution

Given equation is

`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`

`\implies dy/dx + (2x)/((x^2 + 1)) xx y = sqrt(x^2 + 4)/((x^2 + 1))`

It is of the form,

`dy/dx + Py` = Q

∴ I.F. = `e^(int P.dx)`

= `e^(int((2x)/(x^2 + 1))dx)`

Let x2 + 1 = t

2x dx = dt

∴ I.F. = `e^(int dt/t)`

= elog t

= t

= x2 + 1

General solution is given as

(I.F.)y = `int (I.F.) Q dx + C`

`\implies` (x2 + 1)y = `int (x^2 + 1) sqrt(x^2 + 4)/((x^2 + 1)) dx + C` 

`\implies` (x2 + 1)y = `int sqrt(x^2 + 4)  dx + C`

`\implies` (x2 + 1)y = `int sqrt((x)^2 + 2^2)  dx + C`

`\implies` (x2 + 1)y = `x/2 (sqrt(x^2 + 4) + 4/2 log |x + sqrt(x^2 + 4)|) + C`

`\implies` (x2 + 1)y = `x/2 sqrt(x^2 + 4) + 2 log |x + sqrt(x^2 + 4) | + C`

is the required solution of given differential equation.

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Outside Delhi Set 1

RELATED QUESTIONS

Find the the differential equation for all the straight lines, which are at a unit distance from the origin.


For the differential equation, find the general solution:

`dy/dx + (sec x) y = tan x (0 <= x < pi/2)`


For the differential equation, find the general solution:

`x dy/dx +  2y= x^2 log x`


For the differential equation, find the general solution:

y dx + (x – y2) dy = 0


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`


For the differential equation given, find a particular solution satisfying the given condition:

`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0`  when x = 1


Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.


The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?


\[\frac{dy}{dx}\] = y tan x − 2 sin x


\[\left( \sin x \right)\frac{dy}{dx} + y \cos x = 2 \sin^2 x \cos x\]

\[\frac{dy}{dx} - y = x e^x\]

Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]


Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].


Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .


Solve the differential equation: (1 +x) dy + 2xy dx = cot x dx 


Solve the following differential equation:

`"dy"/"dx" + "y"/"x" = "x"^3 - 3`


Solve the following differential equation:

`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`


Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.


If the slope of the tangent to the curve at each of its point is equal to the sum of abscissa and the product of the abscissa and ordinate of the point. Also, the curve passes through the point (0, 1). Find the equation of the curve.


Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.


`(x + 2y^3 ) dy/dx = y`


Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.

Solution: The equation `("d"y)/("d"x) - y` = 2x

is of the form `("d"y)/("d"x) + "P"y` = Q

where P = `square` and Q = `square`

∴ I.F. = `"e"^(int-"d"x)` = e–x

∴ the solution of the linear differential equation is

ye–x = `int 2x*"e"^-x  "d"x + "c"`

∴ ye–x  = `2int x*"e"^-x  "d"x + "c"`

= `2{x int"e"^-x "d"x - int square  "d"x* "d"/("d"x) square"d"x} + "c"`

= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`

∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`

∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`

∴ `y + square + square` = cex is the required general solution of the given differential equation


Which of the following is a second order differential equation?


Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.


Let y = y(x) be the solution curve of the differential equation `(dy)/(dx) + ((2x^2 + 11x + 13)/(x^3 + 6x^2 + 11x + 6)) y = ((x + 3))/(x + 1), x > - 1`, which passes through the point (0, 1). Then y(1) is equal to ______.


If sin x is the integrating factor (IF) of the linear differential equation `dy/dx + Py` = Q then P is ______.


Solve:

`xsinx dy/dx + (xcosx + sinx)y` = sin x


The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×