मराठी

Find the general solution of the differential equation: (x2+1)dydx+2xy=x2+4 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of the differential equation:

`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`

बेरीज

उत्तर

Given equation is

`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`

`\implies dy/dx + (2x)/((x^2 + 1)) xx y = sqrt(x^2 + 4)/((x^2 + 1))`

It is of the form,

`dy/dx + Py` = Q

∴ I.F. = `e^(int P.dx)`

= `e^(int((2x)/(x^2 + 1))dx)`

Let x2 + 1 = t

2x dx = dt

∴ I.F. = `e^(int dt/t)`

= elog t

= t

= x2 + 1

General solution is given as

(I.F.)y = `int (I.F.) Q dx + C`

`\implies` (x2 + 1)y = `int (x^2 + 1) sqrt(x^2 + 4)/((x^2 + 1)) dx + C` 

`\implies` (x2 + 1)y = `int sqrt(x^2 + 4)  dx + C`

`\implies` (x2 + 1)y = `int sqrt((x)^2 + 2^2)  dx + C`

`\implies` (x2 + 1)y = `x/2 (sqrt(x^2 + 4) + 4/2 log |x + sqrt(x^2 + 4)|) + C`

`\implies` (x2 + 1)y = `x/2 sqrt(x^2 + 4) + 2 log |x + sqrt(x^2 + 4) | + C`

is the required solution of given differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Outside Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the the differential equation for all the straight lines, which are at a unit distance from the origin.


For the differential equation, find the general solution:

`x log x dy/dx + y=    2/x log x`


For the differential equation, find the general solution:

`(x + 3y^2) dy/dx = y(y > 0)`


For the differential equation given, find a particular solution satisfying the given condition:

`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0`  when x = 1


Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.


The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.


The integrating factor of the differential equation.

`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.


The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?


x dy = (2y + 2x4 + x2) dx


dx + xdy = e−y sec2 y dy


Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]


Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` . 


Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.


Solve the following differential equation:

`"dy"/"dx" + "y"/"x" = "x"^3 - 3`


Solve the following differential equation:

`("x" + 2"y"^3) "dy"/"dx" = "y"`


Solve the following differential equation:

`("x + y") "dy"/"dx" = 1`


Solve the following differential equation:

`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`


If the slope of the tangent to the curve at each of its point is equal to the sum of abscissa and the product of the abscissa and ordinate of the point. Also, the curve passes through the point (0, 1). Find the equation of the curve.


Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.


The integrating factor of `(dy)/(dx) + y` = e–x is ______.


Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.

Solution: The equation `("d"y)/("d"x) - y` = 2x

is of the form `("d"y)/("d"x) + "P"y` = Q

where P = `square` and Q = `square`

∴ I.F. = `"e"^(int-"d"x)` = e–x

∴ the solution of the linear differential equation is

ye–x = `int 2x*"e"^-x  "d"x + "c"`

∴ ye–x  = `2int x*"e"^-x  "d"x + "c"`

= `2{x int"e"^-x "d"x - int square  "d"x* "d"/("d"x) square"d"x} + "c"`

= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`

∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`

∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`

∴ `y + square + square` = cex is the required general solution of the given differential equation


The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.


Integrating factor of the differential equation `(1 - x^2) ("d"y)/("d"x) - xy` = 1 is ______.


State whether the following statement is true or false.

The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.


If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.


Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.


Solve the differential equation `dy/dx+2xy=x` by completing the following activity.

Solution: `dy/dx+2xy=x`       ...(1)

This is the linear differential equation of the form `dy/dx +Py =Q,"where"`

`P=square` and Q = x

∴ `I.F. = e^(intPdx)=square`

The solution of (1) is given by

`y.(I.F.)=intQ(I.F.)dx+c=intsquare  dx+c`

∴ `ye^(x^2) = square`

This is the general solution.


If sec x + tan x is the integrating factor of `dy/dx + Py` = Q, then value of P is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×