मराठी

Solve the Differential Equation: ( 1 + X 2 ) D Y D X + 2 X Y − 4 X 2 = 0 , Subject to the Initial Condition Y(0) = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.

बेरीज

उत्तर

The given differential equation can be written as:

`dy/dx + (2x)/(1+x^2)y = (4x^2)/(1+x^2)`  ...(1)

This is a linear differential equation of the form `dy/dx + Py = Q`

`P = (2x)/(1+x^2) and Q = (4x)/(1+x^2)`

`"I.F" = e^(intPdx) = e^(int(2x)/(1+x^2)dx) = e^log(1+x^2) = 1+x^2`

Multipying both sides of  (1) by I.F = `(1+x^2)`, we get

`(1+x^2)dy/dx + 2xy = 4x^2`

Integrating both sides with respect to x, we get

`y (1+x^2) = int4x^2dx +"C"`

`y (1+x^2) = (4x^3)/(3) + "C"` ...(2)

Given `y = 0,` when `x =0`

Substituting x = 0 and y = 0 in (1), we get

0 = 0 + C ⇒ C = 0

Substituting C = 0 in (2), we get `y = (4x^3)/(3(1+x^2),` which is the required solution.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 65/1/1

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the the differential equation for all the straight lines, which are at a unit distance from the origin.


For the differential equation, find the general solution:

`dy/dx + y/x = x^2`


For the differential equation, find the general solution:

`x dy/dx + y - x + xy cot x = 0(x != 0)`


For the differential equation, find the general solution:

`(x + 3y^2) dy/dx = y(y > 0)`


For the differential equation given, find a particular solution satisfying the given condition:

`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0`  when x = 1


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx - 3ycotx = sin 2x; y = 2`  when `x = pi/2`


Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.


\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = e^{tan^{- 1} x}\]

\[\left( 2x - 10 y^3 \right)\frac{dy}{dx} + y = 0\]

(x + tan y) dy = sin 2y dx


dx + xdy = e−y sec2 y dy


\[\frac{dy}{dx}\] + y cos x = sin x cos x


Solve the differential equation \[\left( x + 2 y^2 \right)\frac{dy}{dx} = y\], given that when x = 2, y = 1.


Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]


Solve the differential equation: (1 +x) dy + 2xy dx = cot x dx 


Solve the following differential equation dr + (2r cot θ + sin 2θ) dθ = 0.


Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.


Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.


`(x + 2y^3 ) dy/dx = y`


The solution of `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0 is ______.


Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.


Let y = y(x) be the solution curve of the differential equation `(dy)/(dx) + ((2x^2 + 11x + 13)/(x^3 + 6x^2 + 11x + 6)) y = ((x + 3))/(x + 1), x > - 1`, which passes through the point (0, 1). Then y(1) is equal to ______.


Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.


If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.


If sin x is the integrating factor (IF) of the linear differential equation `dy/dx + Py` = Q then P is ______.


Find the general solution of the differential equation:

`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`


Solve the differential equation `dy/dx+2xy=x` by completing the following activity.

Solution: `dy/dx+2xy=x`       ...(1)

This is the linear differential equation of the form `dy/dx +Py =Q,"where"`

`P=square` and Q = x

∴ `I.F. = e^(intPdx)=square`

The solution of (1) is given by

`y.(I.F.)=intQ(I.F.)dx+c=intsquare  dx+c`

∴ `ye^(x^2) = square`

This is the general solution.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×