Advertisements
Advertisements
प्रश्न
The solution of `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0 is ______.
उत्तर
The solution of `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0 is y = `4/3 x^3/((1 + x^2)) + "c" (1 + x^2)^-1`.
Explanation:
The given differential equation is `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0
⇒ `("d"y)/("d"x) + (2xy)/(1 + x^2) = (4x^2)/(1 + x^2)`
Since it is a linear differential equation
∴ P = `(2x)/(1 + x^2)` and Q = `(4x^2)/(1 + x^2)`
Integrating factor I.F. = `"e"^(int Pdx)`
= `"e"^(int (2x)/(1 + x^2) "d"x)`
= `"e"^(log(1 + x^2))`
= `(1 + x^2)`
∴ Solution is `y xx "I"."F" = int "Q" xx "I"."F". "d"x + "c"`
⇒ `y xx (1 + x^2) = int (4x)/(1 + x^2) xx (1 + x^2)"d"x + "c"`
⇒ `y xx (1 + x^2) = int 4x^2 "d"x + "c"`
⇒ `y xx (1 + x^2) = 4/3 x^3 + "c"`
⇒ y = `4/3 x^3/((1 + x^2)) + "c"(1 + x^2)^-1`
APPEARS IN
संबंधित प्रश्न
For the differential equation, find the general solution:
`(x + y) dy/dx = 1`
For the differential equation, find the general solution:
y dx + (x – y2) dy = 0
For the differential equation given, find a particular solution satisfying the given condition:
`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`
For the differential equation given, find a particular solution satisfying the given condition:
`dy/dx - 3ycotx = sin 2x; y = 2` when `x = pi/2`
Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.
Solve the differential equation `x dy/dx + y = x cos x + sin x`, given that y = 1 when `x = pi/2`
\[\frac{dy}{dx}\] = y tan x − 2 sin x
Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]
Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]
Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].
Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .
Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`
Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` .
Solve the following differential equation:
`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`
Solve the following differential equation:
`"dy"/"dx" + "y" * sec "x" = tan "x"`
Solve the following differential equation:
`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`
Solve the following differential equation:
`("x + y") "dy"/"dx" = 1`
Solve the following differential equation:
`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`
Solve the following differential equation:
`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`
The integrating factor of `(dy)/(dx) + y` = e–x is ______.
The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.
The equation x2 + yx2 + x + y = 0 represents
If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.
Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.
The solution of the differential equation `dx/dt = (xlogx)/t` is ______.