Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`
उत्तर
`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`
∴ `"dy"/"dx" + ("2x"/(1 - "x"^2))"y" = "x"/(1 - "x"^2)^(1/2)`
This is the linear differential equation of the form
`"dy"/"dx" + "P" * "y" = "Q",` where P = `"2x"/(1 - "x"^2)` and Q = `"x"/(1 - "x"^2)^(1/2)`
∴ I.F. = `"e"^(int "P dx") = "e"^(int "2x"/"1 - x"^2"dx")`
`= "e"^(- int (- 2"x")/(1 - "x"^2)) = "e"^(- log |1 - "x"^2|)`
`= "e"^(log |1/(1 - "x"^2)|) = 1/(1 - "x"^2)`
∴ the solution of (1) is given by
`"y"*("I.F.") = int "Q" * ("I.F.") "dx" + "c"`
∴ `"y" * 1/(1 - "x"^2) = int "x"/(1 - "x")^(1/2) * 1/(1 - "x"^2)` dx + c
∴ `"y"/((1 - "x"^2)) = int "x"/(1 - "x"^2)^(3/2) "dx" + "c"`
Put 1 - x2 = t
∴ x dx = - `"dt"/2`
∴ `"y"/(1 - "x"^2) = int 1/"t"^(3/2) * (- "dt")/2 + "c"`
∴ `"y"/(1 - "x"^2) = - 1/2 int "t"^(- 3/2) "dt" + "c"`
∴ `"y"/(1 - "x"^2) = - 1/2 * "t"^(- 1/2)/(- 1/2) + "c"`
∴ `"y"/(1 - "x"^2) = 1/(1 - "x"^2)^(1/2) + "c"`
∴ y = `sqrt(1 - "x"^2) + "c" (1 - "x"^2)`
This is the general solution.
APPEARS IN
संबंधित प्रश्न
Find the the differential equation for all the straight lines, which are at a unit distance from the origin.
For the differential equation, find the general solution:
`dy/dx + y/x = x^2`
For the differential equation, find the general solution:
`x log x dy/dx + y= 2/x log x`
For the differential equation, find the general solution:
`x dy/dx + y - x + xy cot x = 0(x != 0)`
For the differential equation, find the general solution:
`(x + 3y^2) dy/dx = y(y > 0)`
Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.
Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.
The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.
The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?
Find the general solution of the differential equation `dy/dx - y = sin x`
Solve the differential equation `x dy/dx + y = x cos x + sin x`, given that y = 1 when `x = pi/2`
Solve the following differential equation:- \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\]
Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .
Solve the following differential equation:-
\[\left( 1 + x^2 \right)\frac{dy}{dx} - 2xy = \left( x^2 + 2 \right)\left( x^2 + 1 \right)\]
Solve the following differential equation:
`("x + y") "dy"/"dx" = 1`
Solve the following differential equation:
`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`
The integrating factor of `(dy)/(dx) + y` = e–x is ______.
`(x + 2y^3 ) dy/dx = y`
The slope of the tangent to the curves x = 4t3 + 5, y = t2 - 3 at t = 1 is ______
Integrating factor of `dy/dx + y = x^2 + 5` is ______
If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.
Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.
Let y = y(x) be the solution curve of the differential equation `(dy)/(dx) + ((2x^2 + 11x + 13)/(x^3 + 6x^2 + 11x + 6)) y = ((x + 3))/(x + 1), x > - 1`, which passes through the point (0, 1). Then y(1) is equal to ______.
Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.
If the solution curve y = y(x) of the differential equation y2dx + (x2 – xy + y2)dy = 0, which passes through the point (1, 1) and intersects the line y = `sqrt(3) x` at the point `(α, sqrt(3) α)`, then value of `log_e (sqrt(3)α)` is equal to ______.
If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.
The solution of the differential equation `dx/dt = (xlogx)/t` is ______.
Solve the differential equation `dy/dx+2xy=x` by completing the following activity.
Solution: `dy/dx+2xy=x` ...(1)
This is the linear differential equation of the form `dy/dx +Py =Q,"where"`
`P=square` and Q = x
∴ `I.F. = e^(intPdx)=square`
The solution of (1) is given by
`y.(I.F.)=intQ(I.F.)dx+c=intsquare dx+c`
∴ `ye^(x^2) = square`
This is the general solution.
The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.
Solve:
`xsinx dy/dx + (xcosx + sinx)y` = sin x