मराठी

Solve the Following Differential Equation:- ( Cot − 1 Y + X ) D Y = ( 1 + Y 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:- \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\]

बेरीज

उत्तर

The given differential equation is \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\]
This differential equation can be written as\[\frac{dx}{dy} = \frac{\cot^{- 1} y + x}{1 + y^2} \]
\[ \Rightarrow \frac{dx}{dy} + \left( - \frac{1}{1 + y^2} \right)x = \frac{\cot^{- 1} y}{1 + y^2}\]
This is a linear differential equation with
\[P = - \frac{1}{1 + y^2}\text{ and }Q = \frac{\cot^{- 1} y}{1 + y^2}\]
\[I.F.=e^{- \int\frac{1}{1 + y^2}dy} = e^{cot^{- 1} y}\]
Multiply the differential equation by integration factor (I.F.), we get
\[\frac{dx}{dy} e^{cot^{- 1} y} - \frac{x}{\left( 1 + y^2 \right)} e^{cot^{- 1} y} = \frac{\cot^{- 1} y}{\left( 1 + y^2 \right)} e^{cot^{- 1} y} \]
\[\Rightarrow \frac{d}{dy}\left( x\ e^{cot^{- 1} y} \right) = \frac{\cot^{- 1} y}{\left( 1 + y^2 \right)} e^{cot^{- 1} y}\]
Integrating both sides with respect y, we get
\[x e^{cot^{- 1} y} = \int\frac{\cot^{- 1} y}{\left( 1 + y^2 \right)} e^{cot^{- 1} y} dy + C\]
Putting \[t = \cot^{- 1} y\]
\[dt = - \frac{1}{1 + y^2}dy\], we get

\[x e^{cot^{- 1} y} = - \int t e^t dt + C\]
\[ \Rightarrow x e^{cot^{- 1} y} = - e^t \left( t - 1 \right) + C\]
\[ \Rightarrow x e^{cot^{- 1} y} = e^{cot^{- 1}} y \left( 1 - \cot^{- 1} y \right) + C\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.10 [पृष्ठ १०८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.10 | Q 42 | पृष्ठ १०८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

For the differential equation, find the general solution:

`dy/dx + y/x = x^2`


For the differential equation, find the general solution:

(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx - 3ycotx = sin 2x; y = 2`  when `x = pi/2`


The integrating factor of the differential equation.

`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.


Solve the differential equation `x dy/dx + y = x cos x + sin x`,  given that y = 1 when `x = pi/2`


\[\frac{dy}{dx} + y \tan x = x^2 \cos^2 x\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = e^{tan^{- 1} x}\]

x dy = (2y + 2x4 + x2) dx


\[y^2 \frac{dx}{dy} + x - \frac{1}{y} = 0\]

 


dx + xdy = e−y sec2 y dy


\[\left( \sin x \right)\frac{dy}{dx} + y \cos x = 2 \sin^2 x \cos x\]

\[\frac{dy}{dx} + 2y = x e^{4x}\]

Find the general solution of the differential equation \[x\frac{dy}{dx} + 2y = x^2\]


Solve the following differential equation:-
\[\left( 1 + x^2 \right)\frac{dy}{dx} - 2xy = \left( x^2 + 2 \right)\left( x^2 + 1 \right)\]


Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.


Solve the following differential equation:

`"dy"/"dx" + "y"/"x" = "x"^3 - 3`


Solve the following differential equation:

`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`


Solve the following differential equation:

`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`


Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.


The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.


Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.


`(x + 2y^3 ) dy/dx = y`


The integrating factor of the differential equation sin y `("dy"/"dx")` = cos y(1 - x cos y) is ______.


Integrating factor of `dy/dx + y = x^2 + 5` is ______ 


Integrating factor of the differential equation `(1 - x^2) ("d"y)/("d"x) - xy` = 1 is ______.


The solution of `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0 is ______.


The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is


The integrating factor of differential equation `(1 - y)^2  (dx)/(dy) + yx = ay(-1 < y < 1)`


State whether the following statement is true or false.

The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.


If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.


Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.


If the solution curve y = y(x) of the differential equation y2dx + (x2 – xy + y2)dy = 0, which passes through the point (1, 1) and intersects the line y = `sqrt(3)  x` at the point `(α, sqrt(3) α)`, then value of `log_e (sqrt(3)α)` is equal to ______.


If sin x is the integrating factor (IF) of the linear differential equation `dy/dx + Py` = Q then P is ______.


Find the general solution of the differential equation:

`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`


Solve:

`xsinx dy/dx + (xcosx + sinx)y` = sin x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×