मराठी

Find the Particular Solution of the Differential Equation D X D Y + X Cot Y = 2 Y + Y 2 Cot Y , Y ≠ 0 Given that X = 0 When Y = π 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].

बेरीज

उत्तर

We have,
\[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dx}{dy} + Px = Q\]
\[\text{ where }P = \cot y\text{ and }Q = 2y + y^2 \cot y\]
\[ \therefore I . F . = e^{\int P\ dy} \]
\[ = e^{\int\cot y\ dy} \]
\[ = e^{log\left| \sin y \right|} = \sin y\]
\[\text{Multiplying both sides of } \left( 1 \right)\text{ by }I.F. = \sin y,\text{ we get }\]
\[\sin y\left( \frac{dx}{dy} + x \cot y \right) = \sin y\left( y^2 \cot y + 2y \right)\]
\[ \Rightarrow \sin y\frac{dx}{dy} + x \cos y = y^2 \cos y + 2y \sin y\]
Integrating both sides with respect to y, we get

\[ \Rightarrow x \sin y = y^2 \int\cos y\ dy - \int\left[ \frac{d}{dy}\left( y^2 \right)\int\cos y\ dy \right]dy + \int2y \sin y\ dy + C\]
\[ \Rightarrow x \sin y = y^2 \sin y - \int2y \sin y\ dy + \int2y\sin y\ dy + C\]
\[ \Rightarrow x \sin y = y^2 \sin y + C\]
Now, 
\[y = \frac{\pi}{2}\text{ at }x = 0\]
\[ \therefore 0 \times \sin \frac{\pi}{2} = \frac{\pi}{4}^2 \sin \frac{\pi}{2} + C\]
\[ \Rightarrow C = - \frac{\pi}{4}^2 \]
Putting the value of C, we get
\[x \sin y = y^2 \sin y - \frac{\pi}{4}^2 \]
\[\text{ Hence, }x \sin y = y^2 \sin y - \frac{\pi}{4}^2\text{ is the required solution.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.10 [पृष्ठ १०८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.10 | Q 41 | पृष्ठ १०८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the the differential equation for all the straight lines, which are at a unit distance from the origin.


For the differential equation, find the general solution:

`dy/dx + y/x = x^2`


For the differential equation, find the general solution:

`cos^2 x dy/dx + y = tan x(0 <= x < pi/2)`


For the differential equation, find the general solution:

`(x + 3y^2) dy/dx = y(y > 0)`


For the differential equation given, find a particular solution satisfying the given condition:

`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0`  when x = 1


Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.


The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.


Solve the differential equation `x dy/dx + y = x cos x + sin x`,  given that y = 1 when `x = pi/2`


x dy = (2y + 2x4 + x2) dx


\[y^2 \frac{dx}{dy} + x - \frac{1}{y} = 0\]

 


(x + tan y) dy = sin 2y dx


dx + xdy = e−y sec2 y dy


\[\frac{dy}{dx}\] + y cos x = sin x cos x


\[x\frac{dy}{dx} + 2y = x \cos x\]

\[\frac{dy}{dx} - y = x e^x\]

\[\frac{dy}{dx} + 2y = x e^{4x}\]

Find the general solution of the differential equation \[x\frac{dy}{dx} + 2y = x^2\]


Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .


Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`


Solve the following differential equation:

`"dy"/"dx" + "y"/"x" = "x"^3 - 3`


Solve the following differential equation:

`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`


Solve the following differential equation dr + (2r cot θ + sin 2θ) dθ = 0.


Solve the following differential equation:

`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`


Solve the following differential equation:

`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`


Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.


The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.


Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.


The integrating factor of `(dy)/(dx) + y` = e–x is ______.


`(x + 2y^3 ) dy/dx = y`


Integrating factor of `dy/dx + y = x^2 + 5` is ______ 


The solution of `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0 is ______.


The equation x2 + yx2 + x + y = 0 represents


If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.


If sin x is the integrating factor (IF) of the linear differential equation `dy/dx + Py` = Q then P is ______.


Solve the differential equation `dy/dx+2xy=x` by completing the following activity.

Solution: `dy/dx+2xy=x`       ...(1)

This is the linear differential equation of the form `dy/dx +Py =Q,"where"`

`P=square` and Q = x

∴ `I.F. = e^(intPdx)=square`

The solution of (1) is given by

`y.(I.F.)=intQ(I.F.)dx+c=intsquare  dx+c`

∴ `ye^(x^2) = square`

This is the general solution.


If sec x + tan x is the integrating factor of `dy/dx + Py` = Q, then value of P is ______.


Solve:

`xsinx dy/dx + (xcosx + sinx)y` = sin x


The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×