मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Solve the following differential equation: xdydxyex(1+x2)dydx+y=etan-1x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:

`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`

बेरीज

उत्तर

`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`

∴ `"dy"/"dx" + 1/(1 + "x"^2) * "y" = "e"^(tan^-1 "x")/(1 + "x"^2)`     ....(1)

This is the linear differential equation of the form

`"dy"/"dx" + "P" * "y" = "Q",` where P = `1/(1 + "x"^2)` and Q = `"e"^(tan^-1 "x")/(1 + "x"^2)`

∴ I.F. = `"e"^(int "P dx") = "e"^(int 1/"1 + x"^2"dx")`

`= "e"^(tan^-1 "x")`

∴ the solution of (1) is given by

`"y" * ("I.F.") = int "Q" * ("I.F.") "dx" + "c"`

∴ `"y" * "e"^(tan^-1"x") = int "e"^(tan^-1 "x")/(1 + "x"^2) * "e"^(tan^-1"x") "dx" + "c"`

∴ `"y" * "e"^(tan^-1"x") = int ("e"^(tan^-1 "x")) * ("e"^(tan^-1"x")/(1 + "x"^2)) "dx" + "c"`

Put `"e"^(tan^-1"x") = "t"`

∴ `"e"^(tan^-1"x")/(1 + "x"^2) "dx" = "dt"`

∴ `"y" * "e"^(tan^-1"x") = int "t dt" + "c"`

∴ `"y" * "e"^(tan^-1"x") = "t"^2/2 + "c"`

∴ `"y" * "e"^(tan^-1"x") = 1/2  ("e"^(tan^-1"x"))^2 + "c"`

∴ y = `1/2 "e"^(tan^-1"x") + "ce"^(- tan^-1 "x")`

This is the general solution.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Differential Equations - Exercise 6.5 [पृष्ठ २०७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Differential Equations
Exercise 6.5 | Q 1.11 | पृष्ठ २०७

संबंधित प्रश्‍न

For the differential equation, find the general solution:

`dy/dx + y/x = x^2`


For the differential equation, find the general solution:

`dy/dx + (sec x) y = tan x (0 <= x < pi/2)`


For the differential equation, find the general solution:

`cos^2 x dy/dx + y = tan x(0 <= x < pi/2)`


For the differential equation, find the general solution:

(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)


For the differential equation, find the general solution:

`x dy/dx + y - x + xy cot x = 0(x != 0)`


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx - 3ycotx = sin 2x; y = 2`  when `x = pi/2`


The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.


The integrating factor of the differential equation.

`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.


Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`


Solve the differential equation `x dy/dx + y = x cos x + sin x`,  given that y = 1 when `x = pi/2`


\[\left( 2x - 10 y^3 \right)\frac{dy}{dx} + y = 0\]

\[\frac{dy}{dx}\] = y tan x − 2 sin x


\[\left( \sin x \right)\frac{dy}{dx} + y \cos x = 2 \sin^2 x \cos x\]

\[\frac{dy}{dx} - y = x e^x\]

Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]


Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].


Solve the following differential equation:- \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\]


Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .


Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` . 


Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.


Solve the following differential equation:

`"dy"/"dx" + "y" * sec "x" = tan "x"`


Solve the following differential equation:

`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`


Solve the following differential equation:

`("x + y") "dy"/"dx" = 1`


Solve the following differential equation:

`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`


Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.


If the slope of the tangent to the curve at each of its point is equal to the sum of abscissa and the product of the abscissa and ordinate of the point. Also, the curve passes through the point (0, 1). Find the equation of the curve.


The integrating factor of the differential equation sin y `("dy"/"dx")` = cos y(1 - x cos y) is ______.


Which of the following is a second order differential equation?


The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is


If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.


If the solution curve y = y(x) of the differential equation y2dx + (x2 – xy + y2)dy = 0, which passes through the point (1, 1) and intersects the line y = `sqrt(3)  x` at the point `(α, sqrt(3) α)`, then value of `log_e (sqrt(3)α)` is equal to ______.


If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.


If sin x is the integrating factor (IF) of the linear differential equation `dy/dx + Py` = Q then P is ______.


The solution of the differential equation `dx/dt = (xlogx)/t` is ______.


Find the general solution of the differential equation:

`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`


Solve:

`xsinx dy/dx + (xcosx + sinx)y` = sin x


The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×