मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Solve the following differential equation: x + adydxyx + a(x + a)dydx-3y=(x + a)5 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:

`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`

बेरीज

उत्तर

`(x + a)dy/dx - 3y = (x + a)^5`

∴ `dy/dx - 3y/(x + a) = (x + a)^4`

∴ `dy/dx + ((- 3)/(x + a))y = (x + a)^4`  ...(1)

This is the linear differential equation of the form

`dy/dx + "P".y = "Q"`, where P = `(- 3)/(x + a)` and Q = (x + a)4 

∴ I.F. = `e^(int P dx) = e^(int (- 3)/(x + a)dx) = e^(-3 int 1/(x + a)dx)`

`= e^(- 3 log |x + a|) = e^(log (x + a)^- 3)`

`= (x + a)^-3 = 1/(x + a)^3`

∴ the solution of (1) is given by

`y . ("I.F.") = int "Q" * ("I.F.") dx + c`

∴ `y * 1/(x + a)^3 = int (x + a)^4 * 1/(x + a)^3 dx + c`

∴ `y/(x + a)^3 = int (x + a) dx + c`

∴ `y/(x + a)^3 = ((x + a)^2)/2 + c`

∴ 2y = (x + a)5 + 2c (x + a)3 

This is the general solution.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Differential Equations - Exercise 6.5 [पृष्ठ २०६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Differential Equations
Exercise 6.5 | Q 1.07 | पृष्ठ २०६

संबंधित प्रश्‍न

For the differential equation, find the general solution:

`x dy/dx +  2y= x^2 log x`


For the differential equation, find the general solution:

(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx - 3ycotx = sin 2x; y = 2`  when `x = pi/2`


Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.


\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = e^{tan^{- 1} x}\]

\[\left( 2x - 10 y^3 \right)\frac{dy}{dx} + y = 0\]

\[\left( \sin x \right)\frac{dy}{dx} + y \cos x = 2 \sin^2 x \cos x\]

\[x\frac{dy}{dx} + 2y = x \cos x\]

\[\frac{dy}{dx} - y = x e^x\]

\[\frac{dy}{dx} + 2y = x e^{4x}\]

Solve the differential equation \[\left( x + 2 y^2 \right)\frac{dy}{dx} = y\], given that when x = 2, y = 1.


Find the general solution of the differential equation \[x\frac{dy}{dx} + 2y = x^2\]


Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].


Solve the following differential equation:- \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\]


Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .


Solve the following differential equation:-
\[\left( 1 + x^2 \right)\frac{dy}{dx} - 2xy = \left( x^2 + 2 \right)\left( x^2 + 1 \right)\]


If f(x) = x + 1, find `"d"/"dx"("fof") ("x")`


Solve the following differential equation:

`"dy"/"dx" + "y"/"x" = "x"^3 - 3`


Solve the following differential equation:

`("x + y") "dy"/"dx" = 1`


Solve the following differential equation:

y dx + (x - y2) dy = 0


Solve the following differential equation:

`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`


Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.


Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.


The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.


If the slope of the tangent to the curve at each of its point is equal to the sum of abscissa and the product of the abscissa and ordinate of the point. Also, the curve passes through the point (0, 1). Find the equation of the curve.


The integrating factor of the differential equation sin y `("dy"/"dx")` = cos y(1 - x cos y) is ______.


The slope of the tangent to the curves x = 4t3 + 5, y = t2 - 3 at t = 1 is ______


The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is


The integrating factor of differential equation `(1 - y)^2  (dx)/(dy) + yx = ay(-1 < y < 1)`


Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.


Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.


Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.


Find the general solution of the differential equation:

`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`


The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.


Solve:

`xsinx dy/dx + (xcosx + sinx)y` = sin x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×