Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`
उत्तर
`(x + a)dy/dx - 3y = (x + a)^5`
∴ `dy/dx - 3y/(x + a) = (x + a)^4`
∴ `dy/dx + ((- 3)/(x + a))y = (x + a)^4` ...(1)
This is the linear differential equation of the form
`dy/dx + "P".y = "Q"`, where P = `(- 3)/(x + a)` and Q = (x + a)4
∴ I.F. = `e^(int P dx) = e^(int (- 3)/(x + a)dx) = e^(-3 int 1/(x + a)dx)`
`= e^(- 3 log |x + a|) = e^(log (x + a)^- 3)`
`= (x + a)^-3 = 1/(x + a)^3`
∴ the solution of (1) is given by
`y . ("I.F.") = int "Q" * ("I.F.") dx + c`
∴ `y * 1/(x + a)^3 = int (x + a)^4 * 1/(x + a)^3 dx + c`
∴ `y/(x + a)^3 = int (x + a) dx + c`
∴ `y/(x + a)^3 = ((x + a)^2)/2 + c`
∴ 2y = (x + a)5 + 2c (x + a)3
This is the general solution.
APPEARS IN
संबंधित प्रश्न
For the differential equation, find the general solution:
`dy/dx + 2y = sin x`
For the differential equation, find the general solution:
`cos^2 x dy/dx + y = tan x(0 <= x < pi/2)`
For the differential equation, find the general solution:
`x dy/dx + 2y= x^2 log x`
For the differential equation, find the general solution:
(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)
For the differential equation, find the general solution:
`(x + 3y^2) dy/dx = y(y > 0)`
Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.
Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`
Solve the differential equation `x dy/dx + y = x cos x + sin x`, given that y = 1 when `x = pi/2`
\[\frac{dy}{dx}\] + y cos x = sin x cos x
Solve the differential equation \[\left( x + 2 y^2 \right)\frac{dy}{dx} = y\], given that when x = 2, y = 1.
Find the general solution of the differential equation \[x\frac{dy}{dx} + 2y = x^2\]
Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].
Solve the following differential equation:- \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\]
Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .
Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`
Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` .
Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.
Solve the following differential equation:
`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`
Solve the following differential equation:
`"dy"/"dx" + "y" * sec "x" = tan "x"`
Solve the following differential equation:
`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`
Solve the following differential equation:
`("x + y") "dy"/"dx" = 1`
Solve the following differential equation:
`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`
`(x + 2y^3 ) dy/dx = y`
Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.
Solution: The equation `("d"y)/("d"x) - y` = 2x
is of the form `("d"y)/("d"x) + "P"y` = Q
where P = `square` and Q = `square`
∴ I.F. = `"e"^(int-"d"x)` = e–x
∴ the solution of the linear differential equation is
ye–x = `int 2x*"e"^-x "d"x + "c"`
∴ ye–x = `2int x*"e"^-x "d"x + "c"`
= `2{x int"e"^-x "d"x - int square "d"x* "d"/("d"x) square"d"x} + "c"`
= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`
∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`
∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`
∴ `y + square + square` = cex is the required general solution of the given differential equation
Integrating factor of `dy/dx + y = x^2 + 5` is ______
Integrating factor of the differential equation `(1 - x^2) ("d"y)/("d"x) - xy` = 1 is ______.
State whether the following statement is true or false.
The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.
Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.
Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.
Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.
If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.
If sin x is the integrating factor (IF) of the linear differential equation `dy/dx + Py` = Q then P is ______.
If sec x + tan x is the integrating factor of `dy/dx + Py` = Q, then value of P is ______.
The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.