हिंदी

For the differential equation, find the general solution: dydx +2y=sinx - Mathematics

Advertisements
Advertisements

प्रश्न

For the differential equation, find the general solution:

`dy/dx  + 2y = sin x`

योग

उत्तर

The given equation is `dy/dx + 2y = sin x.`            ....(1)
Which is a linear equation of type `dy/dx + Py = Q.`

Here P = 2 and Q = sin x.

∴ `I.F. = e^(int Pdx) = e^(int2 dx) = e^(2x)`

∴ The solution is `y .(I.F.) =int Q. (I. F.) dx + C`

`y. e^(2x) = int e^(2x) sin x  dx + C = I + C`         ....(2)

Now, `I = int e^(2x) sin x  dx`

`= e^(2x) (- cos x) - int 2e^(2x) (- cos x)  dx`   ...[Integrating by part] 

`= -e^(2x) cos x + 2 int e^(2x)  cosx  dx`

Again integrating parts,

`I = - e^(2x) cos x + 2 [e^(2x) sin x - int e^(2x) * 2 sin x  dx]`

`= I = - e^(2x) cos x + 2e^(2x) sin x - 4I`

⇒ 5I = e2x (2 sin x - cos x)

⇒`I = (e^(2x))/5 (2 sin x - cos x)`            ....(3)

Substituting the value of (3) in (2), we get

`y. e^(2x) = 1/5 e^(2x) (2 sin x - cos x) + C`

⇒ `y = 1/5 (2 sin x - cos x) + Ce^(-2x),`

Which is the required solution.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.6 [पृष्ठ ४१३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.6 | Q 1 | पृष्ठ ४१३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

For the differential equation, find the general solution:

`dy/dx + y/x = x^2`


For the differential equation, find the general solution:

`cos^2 x dy/dx + y = tan x(0 <= x < pi/2)`


For the differential equation, find the general solution:

`x dy/dx +  2y= x^2 log x`


For the differential equation, find the general solution:

`x log x dy/dx + y=    2/x log x`


For the differential equation, find the general solution:

(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)


For the differential equation, find the general solution:

`x dy/dx + y - x + xy cot x = 0(x != 0)`


For the differential equation, find the general solution:

`(x + y) dy/dx = 1`


For the differential equation, find the general solution:

y dx + (x – y2) dy = 0


For the differential equation, find the general solution:

`(x + 3y^2) dy/dx = y(y > 0)`


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`


Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.


The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.


\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = e^{tan^{- 1} x}\]

\[\frac{dy}{dx}\] = y tan x − 2 sin x


\[x\frac{dy}{dx} + 2y = x \cos x\]

\[\frac{dy}{dx} - y = x e^x\]

Solve the differential equation \[\left( x + 2 y^2 \right)\frac{dy}{dx} = y\], given that when x = 2, y = 1.


Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]


Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .


Solve the following differential equation:-
\[\left( 1 + x^2 \right)\frac{dy}{dx} - 2xy = \left( x^2 + 2 \right)\left( x^2 + 1 \right)\]


Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`


Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` . 


Solve the differential equation: (1 +x) dy + 2xy dx = cot x dx 


Solve the following differential equation:

`("x + y") "dy"/"dx" = 1`


Solve the following differential equation:

`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`


Solve the following differential equation:

`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`


If the slope of the tangent to the curve at each of its point is equal to the sum of abscissa and the product of the abscissa and ordinate of the point. Also, the curve passes through the point (0, 1). Find the equation of the curve.


`(x + 2y^3 ) dy/dx = y`


Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.

Solution: The equation `("d"y)/("d"x) - y` = 2x

is of the form `("d"y)/("d"x) + "P"y` = Q

where P = `square` and Q = `square`

∴ I.F. = `"e"^(int-"d"x)` = e–x

∴ the solution of the linear differential equation is

ye–x = `int 2x*"e"^-x  "d"x + "c"`

∴ ye–x  = `2int x*"e"^-x  "d"x + "c"`

= `2{x int"e"^-x "d"x - int square  "d"x* "d"/("d"x) square"d"x} + "c"`

= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`

∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`

∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`

∴ `y + square + square` = cex is the required general solution of the given differential equation


The integrating factor of the differential equation sin y `("dy"/"dx")` = cos y(1 - x cos y) is ______.


Which of the following is a second order differential equation?


The equation x2 + yx2 + x + y = 0 represents


If the solution curve y = y(x) of the differential equation y2dx + (x2 – xy + y2)dy = 0, which passes through the point (1, 1) and intersects the line y = `sqrt(3)  x` at the point `(α, sqrt(3) α)`, then value of `log_e (sqrt(3)α)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×