मराठी

For the differential equation, find the general solution: dydx +2y=sinx - Mathematics

Advertisements
Advertisements

प्रश्न

For the differential equation, find the general solution:

`dy/dx  + 2y = sin x`

बेरीज

उत्तर

The given equation is `dy/dx + 2y = sin x.`            ....(1)
Which is a linear equation of type `dy/dx + Py = Q.`

Here P = 2 and Q = sin x.

∴ `I.F. = e^(int Pdx) = e^(int2 dx) = e^(2x)`

∴ The solution is `y .(I.F.) =int Q. (I. F.) dx + C`

`y. e^(2x) = int e^(2x) sin x  dx + C = I + C`         ....(2)

Now, `I = int e^(2x) sin x  dx`

`= e^(2x) (- cos x) - int 2e^(2x) (- cos x)  dx`   ...[Integrating by part] 

`= -e^(2x) cos x + 2 int e^(2x)  cosx  dx`

Again integrating parts,

`I = - e^(2x) cos x + 2 [e^(2x) sin x - int e^(2x) * 2 sin x  dx]`

`= I = - e^(2x) cos x + 2e^(2x) sin x - 4I`

⇒ 5I = e2x (2 sin x - cos x)

⇒`I = (e^(2x))/5 (2 sin x - cos x)`            ....(3)

Substituting the value of (3) in (2), we get

`y. e^(2x) = 1/5 e^(2x) (2 sin x - cos x) + C`

⇒ `y = 1/5 (2 sin x - cos x) + Ce^(-2x),`

Which is the required solution.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise 9.6 [पृष्ठ ४१३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise 9.6 | Q 1 | पृष्ठ ४१३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the the differential equation for all the straight lines, which are at a unit distance from the origin.


For the differential equation, find the general solution:

`dy/dx + y/x = x^2`


For the differential equation, find the general solution:

`cos^2 x dy/dx + y = tan x(0 <= x < pi/2)`


For the differential equation, find the general solution:

`x dy/dx + y - x + xy cot x = 0(x != 0)`


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`


For the differential equation given, find a particular solution satisfying the given condition:

`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0`  when x = 1


Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.


The integrating factor of the differential equation.

`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.


Find the general solution of the differential equation `dy/dx - y = sin x`


\[\frac{dy}{dx} + y \tan x = x^2 \cos^2 x\]

\[y^2 \frac{dx}{dy} + x - \frac{1}{y} = 0\]

 


\[\left( 2x - 10 y^3 \right)\frac{dy}{dx} + y = 0\]

dx + xdy = e−y sec2 y dy


\[\frac{dy}{dx}\] + y cos x = sin x cos x


\[\left( \sin x \right)\frac{dy}{dx} + y \cos x = 2 \sin^2 x \cos x\]

\[\left( x^2 - 1 \right)\frac{dy}{dx} + 2\left( x + 2 \right)y = 2\left( x + 1 \right)\]

\[x\frac{dy}{dx} + 2y = x \cos x\]

\[\frac{dy}{dx} - y = x e^x\]

Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].


Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`


If f(x) = x + 1, find `"d"/"dx"("fof") ("x")`


Solve the following differential equation:

`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`


Solve the following differential equation:

`"dy"/"dx" + "y" * sec "x" = tan "x"`


Solve the following differential equation:

`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`


Solve the following differential equation:

y dx + (x - y2) dy = 0


Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.


The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.


The slope of the tangent to the curves x = 4t3 + 5, y = t2 - 3 at t = 1 is ______


Let y = y(x) be the solution curve of the differential equation `(dy)/(dx) + ((2x^2 + 11x + 13)/(x^3 + 6x^2 + 11x + 6)) y = ((x + 3))/(x + 1), x > - 1`, which passes through the point (0, 1). Then y(1) is equal to ______.


Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.


If the solution curve y = y(x) of the differential equation y2dx + (x2 – xy + y2)dy = 0, which passes through the point (1, 1) and intersects the line y = `sqrt(3)  x` at the point `(α, sqrt(3) α)`, then value of `log_e (sqrt(3)α)` is equal to ______.


If sec x + tan x is the integrating factor of `dy/dx + Py` = Q, then value of P is ______.


The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×