मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Solve the following differential equation: xdydxyxcos2x⋅dydx+y=tanx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:

`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`

बेरीज

उत्तर

`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`

`∴ "dy"/"dx" + 1/cos^2"x" * "y" = (tan "x")/(cos^2"x")`

∴ `"dy"/"dx" + sec^2"x" * "y" = tan "x" * sec^2 "x"`       ....(1)

This is the linear differential equation of the form

`"dy"/"dx" + "P"*"y" = "Q"`, where P = sec2x and Q = `tan "x" * sec^2 "x"`

∴ I.F. = `"e"^(int "Pdx") = "e"^(int sec^2"x"  "dx") = "e"^(tan"x")`

∴ the solution of (1) is given by

`"y" * ("I.F.") = int "Q" (I.F.) "dx" + "c"`

∴ `"y"*"e"^"tan x" = int "tan x" * sec^2"x" * "e"^(tan"x") "dx" + "c"`

Put tan x = t

∴ `sec^2"x"  "dx" = "dt"`

∴ `"y" * "e"^"tan x" = int "t" * "e"^"t" "dt" + "c"`

∴ `"y" * "e"^"tan x" = "t" int "e"^"t" "dt" - int["d"/"dt" ("t") int "e"^"t" "dt"] "dt" + "c"`

`= "t" * "e"^"t" - int 1 * "e"^"t" "dt" + "c"`

`= "t" * "e"^"t" - "e"^"t" + "c"`

`= "e"^"t" ("t - 1") + "c"`

∴ `"y" * "e"^"tan x" = "e"^"tan x" (tan"x" - 1) + "c"`

This is the general solution.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Differential Equations - Exercise 6.5 [पृष्ठ २०६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Differential Equations
Exercise 6.5 | Q 1.02 | पृष्ठ २०६

संबंधित प्रश्‍न

For the differential equation, find the general solution:

`dy/dx  + 2y = sin x`


For the differential equation, find the general solution:

y dx + (x – y2) dy = 0


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`


For the differential equation given, find a particular solution satisfying the given condition:

`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0`  when x = 1


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx - 3ycotx = sin 2x; y = 2`  when `x = pi/2`


Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.


The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.


The integrating factor of the differential equation.

`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.


Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`


Find the general solution of the differential equation `dy/dx - y = sin x`


Solve the differential equation `x dy/dx + y = x cos x + sin x`,  given that y = 1 when `x = pi/2`


\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = e^{tan^{- 1} x}\]

(x + tan y) dy = sin 2y dx


\[\frac{dy}{dx}\] + y cos x = sin x cos x


\[\left( x^2 - 1 \right)\frac{dy}{dx} + 2\left( x + 2 \right)y = 2\left( x + 1 \right)\]

\[x\frac{dy}{dx} + 2y = x \cos x\]

\[\frac{dy}{dx} - y = x e^x\]

Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].


Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .


Solve the following differential equation:

`"dy"/"dx" + "y"/"x" = "x"^3 - 3`


Solve the following differential equation:

`("x" + 2"y"^3) "dy"/"dx" = "y"`


Solve the following differential equation:

`("x + y") "dy"/"dx" = 1`


Solve the following differential equation:

`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`


Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.


The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.


The integrating factor of `(dy)/(dx) + y` = e–x is ______.


Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.

Solution: The equation `("d"y)/("d"x) - y` = 2x

is of the form `("d"y)/("d"x) + "P"y` = Q

where P = `square` and Q = `square`

∴ I.F. = `"e"^(int-"d"x)` = e–x

∴ the solution of the linear differential equation is

ye–x = `int 2x*"e"^-x  "d"x + "c"`

∴ ye–x  = `2int x*"e"^-x  "d"x + "c"`

= `2{x int"e"^-x "d"x - int square  "d"x* "d"/("d"x) square"d"x} + "c"`

= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`

∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`

∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`

∴ `y + square + square` = cex is the required general solution of the given differential equation


The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.


The slope of the tangent to the curves x = 4t3 + 5, y = t2 - 3 at t = 1 is ______


Which of the following is a second order differential equation?


Integrating factor of the differential equation `(1 - x^2) ("d"y)/("d"x) - xy` = 1 is ______.


The integrating factor of differential equation `(1 - y)^2  (dx)/(dy) + yx = ay(-1 < y < 1)`


State whether the following statement is true or false.

The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.


Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.


Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.


If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.


The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.


Solve:

`xsinx dy/dx + (xcosx + sinx)y` = sin x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×