Advertisements
Advertisements
प्रश्न
\[\frac{dy}{dx}\] + y cos x = sin x cos x
उत्तर
We have,
\[\frac{dy}{dx} + y \cos x = \sin x \cos x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
where
\[P = \cos x\]
\[Q = \sin x \cos x\]
\[ \therefore I.F. = e^{\int P\ dx} \]
\[ = e^{\int\cos x\ dx} \]
\[ = e^{\sin x} \]
\[\text{Multiplying both sides of }\left( 1 \right)\text{ by }e^{\sin x} ,\text{ we get }\]
\[ e^{\sin x} \left( \frac{dy}{dx} + y \cos x \right) = e^{\sin x} \sin x \cos x\]
\[ \Rightarrow e^{\sin x} \frac{dy}{dx} + e^{\sin x} y \cos x = e^{\sin x} \sin x\cos x \]
Integrating both sides with respect to x, we get
\[y\ e^{\sin x} = \int e^{\sin x} \sin x\cos \text{ x } dx + C\]
\[ \Rightarrow y e^{\sin x} = I + C . . . . . \left( 2 \right)\]
where
\[I = \int e^{\sin x} \sin x \cos \text{ x } dx\]
\[\text{Putting }t = \sin x,\text{ we get }\]
\[dt = \cos \text{ x }dx\]
\[ = t\int e^t dt - \int\left[ \frac{d}{dt}\left( t \right)\int e^t dt \right]dt\]
\[ = t e^t - e^t \]
\[ = e^t \left( t - 1 \right)\]
\[ = e^{\sin x} \left( \sin x - 1 \right)\]
\[\text{Putting the value of I in }\left( 2 \right), \text{we get }\]
\[\text{ y } e^{\sin x} = e^{\sin x} \left( \sin x - 1 \right) + C\]
\[ \Rightarrow y = \sin x - 1 + C e^{- \sin x} \]
\[\text{Hence, }y = \sin x - 1 + C e^{- \sin x}\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
Find the the differential equation for all the straight lines, which are at a unit distance from the origin.
For the differential equation, find the general solution:
`dy/dx + 2y = sin x`
For the differential equation, find the general solution:
`(x + y) dy/dx = 1`
For the differential equation given, find a particular solution satisfying the given condition:
`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`
The integrating factor of the differential equation.
`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.
The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?
x dy = (2y + 2x4 + x2) dx
(x + tan y) dy = sin 2y dx
Solve the differential equation \[\left( x + 2 y^2 \right)\frac{dy}{dx} = y\], given that when x = 2, y = 1.
Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .
Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .
Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.
Solve the following differential equation:
`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`
Solve the following differential equation:
`"dy"/"dx" + "y" * sec "x" = tan "x"`
Solve the following differential equation:
`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`
Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.
Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.
The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.
The integrating factor of `(dy)/(dx) + y` = e–x is ______.
`(x + 2y^3 ) dy/dx = y`
Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.
Solution: The equation `("d"y)/("d"x) - y` = 2x
is of the form `("d"y)/("d"x) + "P"y` = Q
where P = `square` and Q = `square`
∴ I.F. = `"e"^(int-"d"x)` = e–x
∴ the solution of the linear differential equation is
ye–x = `int 2x*"e"^-x "d"x + "c"`
∴ ye–x = `2int x*"e"^-x "d"x + "c"`
= `2{x int"e"^-x "d"x - int square "d"x* "d"/("d"x) square"d"x} + "c"`
= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`
∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`
∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`
∴ `y + square + square` = cex is the required general solution of the given differential equation
The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.
The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is
The integrating factor of differential equation `(1 - y)^2 (dx)/(dy) + yx = ay(-1 < y < 1)`
State whether the following statement is true or false.
The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.
Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.
Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.
Let y = y(x) be the solution curve of the differential equation `(dy)/(dx) + ((2x^2 + 11x + 13)/(x^3 + 6x^2 + 11x + 6)) y = ((x + 3))/(x + 1), x > - 1`, which passes through the point (0, 1). Then y(1) is equal to ______.
Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.
If sec x + tan x is the integrating factor of `dy/dx + Py` = Q, then value of P is ______.
The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.
Solve:
`xsinx dy/dx + (xcosx + sinx)y` = sin x
The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.