Advertisements
Advertisements
प्रश्न
\[\frac{dy}{dx}\] + y cos x = sin x cos x
उत्तर
We have,
\[\frac{dy}{dx} + y \cos x = \sin x \cos x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
where
\[P = \cos x\]
\[Q = \sin x \cos x\]
\[ \therefore I.F. = e^{\int P\ dx} \]
\[ = e^{\int\cos x\ dx} \]
\[ = e^{\sin x} \]
\[\text{Multiplying both sides of }\left( 1 \right)\text{ by }e^{\sin x} ,\text{ we get }\]
\[ e^{\sin x} \left( \frac{dy}{dx} + y \cos x \right) = e^{\sin x} \sin x \cos x\]
\[ \Rightarrow e^{\sin x} \frac{dy}{dx} + e^{\sin x} y \cos x = e^{\sin x} \sin x\cos x \]
Integrating both sides with respect to x, we get
\[y\ e^{\sin x} = \int e^{\sin x} \sin x\cos \text{ x } dx + C\]
\[ \Rightarrow y e^{\sin x} = I + C . . . . . \left( 2 \right)\]
where
\[I = \int e^{\sin x} \sin x \cos \text{ x } dx\]
\[\text{Putting }t = \sin x,\text{ we get }\]
\[dt = \cos \text{ x }dx\]
\[ = t\int e^t dt - \int\left[ \frac{d}{dt}\left( t \right)\int e^t dt \right]dt\]
\[ = t e^t - e^t \]
\[ = e^t \left( t - 1 \right)\]
\[ = e^{\sin x} \left( \sin x - 1 \right)\]
\[\text{Putting the value of I in }\left( 2 \right), \text{we get }\]
\[\text{ y } e^{\sin x} = e^{\sin x} \left( \sin x - 1 \right) + C\]
\[ \Rightarrow y = \sin x - 1 + C e^{- \sin x} \]
\[\text{Hence, }y = \sin x - 1 + C e^{- \sin x}\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
For the differential equation, find the general solution:
`x dy/dx + 2y= x^2 log x`
For the differential equation, find the general solution:
`(x + 3y^2) dy/dx = y(y > 0)`
For the differential equation given, find a particular solution satisfying the given condition:
`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`
For the differential equation given, find a particular solution satisfying the given condition:
`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0` when x = 1
For the differential equation given, find a particular solution satisfying the given condition:
`dy/dx - 3ycotx = sin 2x; y = 2` when `x = pi/2`
Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`
Find the general solution of the differential equation `dy/dx - y = sin x`
Solve the differential equation `x dy/dx + y = x cos x + sin x`, given that y = 1 when `x = pi/2`
(x + tan y) dy = sin 2y dx
Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]
Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`
Solve the following differential equation:
`("x + y") "dy"/"dx" = 1`
Solve the following differential equation:
`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`
Solve the following differential equation:
y dx + (x - y2) dy = 0
Solve the following differential equation:
`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`
Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.
The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.
If the slope of the tangent to the curve at each of its point is equal to the sum of abscissa and the product of the abscissa and ordinate of the point. Also, the curve passes through the point (0, 1). Find the equation of the curve.
The integrating factor of `(dy)/(dx) + y` = e–x is ______.
Integrating factor of `dy/dx + y = x^2 + 5` is ______
Which of the following is a second order differential equation?
Integrating factor of the differential equation `(1 - x^2) ("d"y)/("d"x) - xy` = 1 is ______.
The equation x2 + yx2 + x + y = 0 represents
Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.
Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.
The solution of the differential equation `dx/dt = (xlogx)/t` is ______.
Solve the differential equation `dy/dx+2xy=x` by completing the following activity.
Solution: `dy/dx+2xy=x` ...(1)
This is the linear differential equation of the form `dy/dx +Py =Q,"where"`
`P=square` and Q = x
∴ `I.F. = e^(intPdx)=square`
The solution of (1) is given by
`y.(I.F.)=intQ(I.F.)dx+c=intsquare dx+c`
∴ `ye^(x^2) = square`
This is the general solution.
If sec x + tan x is the integrating factor of `dy/dx + Py` = Q, then value of P is ______.
The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.
Solve:
`xsinx dy/dx + (xcosx + sinx)y` = sin x