Advertisements
Advertisements
प्रश्न
\[\frac{dy}{dx}\] = y tan x − 2 sin x
उत्तर
We have,
\[\frac{dy}{dx} = y \tan x - 2\sin x\]
\[\frac{dy}{dx} - y \tan x = - 2\sin x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
where
\[P = - \tan x\]
\[Q = - 2\sin x\]
\[ \therefore I.F. = e^{\int P\ dx} \]
\[ = e^{- \int\tan x dx} \]
\[ = e^{- \log\left| \sec x \right|} = \cos x\]
\[\text{Multiplying both sides of }\left( 1 \right)\text{ by }\cos x, \text{ we get }\]
\[\cos x \left( \frac{dy}{dx} - y\tan x \right) = - 2\sin x \times \cos x\]
\[ \Rightarrow \cos x\frac{dy}{dx} + y\sin x = - \sin 2x\]
Integrating both sides with respect to x, we get
\[y \cos x = - \int\sin \text{ 2x } dx + C\]
\[ \Rightarrow y \cos x = \frac{\cos 2x}{2} + C\]
\[ \Rightarrow y \cos x = \frac{1 - 2 \sin^2 x}{2} + C\]
\[ \Rightarrow y \cos x = - \sin^2 x + \frac{1}{2} + C\]
\[ \Rightarrow y \cos x = - \sin^2 x + K ...............\left(\text{where }k = \frac{1}{2} + C \right)\]
\[ \Rightarrow y = \sec x\left( - \sin^2 x + K \right)\]
\[\text{Hence, }y = \sec x\left( - \sin^2 x + K \right)\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
Find the the differential equation for all the straight lines, which are at a unit distance from the origin.
For the differential equation, find the general solution:
`dy/dx + 2y = sin x`
For the differential equation, find the general solution:
`dy/dx + 3y = e^(-2x)`
For the differential equation, find the general solution:
`dy/dx + y/x = x^2`
For the differential equation, find the general solution:
`cos^2 x dy/dx + y = tan x(0 <= x < pi/2)`
For the differential equation, find the general solution:
`x dy/dx + 2y= x^2 log x`
The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.
Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`
\[\frac{dy}{dx}\] + y cos x = sin x cos x
If f(x) = x + 1, find `"d"/"dx"("fof") ("x")`
Solve the following differential equation:
`"dy"/"dx" + "y" * sec "x" = tan "x"`
Solve the following differential equation:
`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`
Solve the following differential equation:
`("x + y") "dy"/"dx" = 1`
Solve the following differential equation:
y dx + (x - y2) dy = 0
Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.
`(x + 2y^3 ) dy/dx = y`
Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.
Solution: The equation `("d"y)/("d"x) - y` = 2x
is of the form `("d"y)/("d"x) + "P"y` = Q
where P = `square` and Q = `square`
∴ I.F. = `"e"^(int-"d"x)` = e–x
∴ the solution of the linear differential equation is
ye–x = `int 2x*"e"^-x "d"x + "c"`
∴ ye–x = `2int x*"e"^-x "d"x + "c"`
= `2{x int"e"^-x "d"x - int square "d"x* "d"/("d"x) square"d"x} + "c"`
= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`
∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`
∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`
∴ `y + square + square` = cex is the required general solution of the given differential equation
Integrating factor of `dy/dx + y = x^2 + 5` is ______
The equation x2 + yx2 + x + y = 0 represents
The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is
State whether the following statement is true or false.
The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.
Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.
Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.
Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.
Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.
If the solution curve y = y(x) of the differential equation y2dx + (x2 – xy + y2)dy = 0, which passes through the point (1, 1) and intersects the line y = `sqrt(3) x` at the point `(α, sqrt(3) α)`, then value of `log_e (sqrt(3)α)` is equal to ______.
If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.
If sin x is the integrating factor (IF) of the linear differential equation `dy/dx + Py` = Q then P is ______.
If sec x + tan x is the integrating factor of `dy/dx + Py` = Q, then value of P is ______.