Advertisements
Advertisements
प्रश्न
Find the the differential equation for all the straight lines, which are at a unit distance from the origin.
उत्तर
The general equation of a line that is at unit distance from the origin is given by
`xcosα+ysinα=1 .....(i)`
Differentiating (i) w.r.t. x, we get
`cosα+dy/dxsinα=0`
`⇒cotα=−dy/dx .....(ii)`
Dividing (i) by sinα, we get
`x cosα/sinα+ysinα/sinα=1/sinα `
`⇒xcotα+y=cosecα`
`⇒xcotα+y=sqrt(1+cot^2α) .....(iii)`
Putting the value of (ii) in (iii), we get
`x(−dy/dx)+y=sqrt(1+(−dy/dx)^2) .....(iv)`
Squaring (iv), we get
`(−xdy/dx+y)^2=(sqrt(1+(dy/dx)^2))^2`
`(x^2−1)(dy/dx)^2−2xydy/dx+y^2−1=0`
APPEARS IN
संबंधित प्रश्न
For the differential equation, find the general solution:
(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)
For the differential equation given, find a particular solution satisfying the given condition:
`dy/dx - 3ycotx = sin 2x; y = 2` when `x = pi/2`
dx + xdy = e−y sec2 y dy
\[\frac{dy}{dx}\] = y tan x − 2 sin x
\[\frac{dy}{dx}\] + y cos x = sin x cos x
Find the general solution of the differential equation \[x\frac{dy}{dx} + 2y = x^2\]
Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]
Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .
Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`
Solve the following differential equation:
`("x" + 2"y"^3) "dy"/"dx" = "y"`
Solve the following differential equation:
`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`
Solve the following differential equation:
`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`
Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.
The integrating factor of the differential equation sin y `("dy"/"dx")` = cos y(1 - x cos y) is ______.
The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.
The slope of the tangent to the curves x = 4t3 + 5, y = t2 - 3 at t = 1 is ______
The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is
State whether the following statement is true or false.
The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.
Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.
Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.
If the solution curve y = y(x) of the differential equation y2dx + (x2 – xy + y2)dy = 0, which passes through the point (1, 1) and intersects the line y = `sqrt(3) x` at the point `(α, sqrt(3) α)`, then value of `log_e (sqrt(3)α)` is equal to ______.
The solution of the differential equation `dx/dt = (xlogx)/t` is ______.
The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.
The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.