Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
`("x" + 2"y"^3) "dy"/"dx" = "y"`
उत्तर
`("x" + 2"y"^3) "dy"/"dx" = "y"`
∴ `("x" + "2y"^3)/"y" = 1/(("dy"/"dx"))`
∴ `"x"/"y" + 2"y"^2 = "dx"/"dy"`
∴ `"dy"/"dx" - 1/"y" * "x" = 2"y"^2` .....(1)
This is the linear differential equation of the form
`"dx"/"dy" + "P"*"x" = "Q"`, where P = `- 1/"y"` and Q = 2y2
∴ I.F. = `"e"^(int "Pdy") = "e"^(int - 1/"y""dy")`
∴ = `"e"^(- log "y") = "e"^(log (1/"y")) = 1/"y"`
∴ the solution of (1) is given by
∴ `"x" * ("I.F.") = int "Q" ("I.F.") "dy" + "c"`
∴ `"x"(1/"y") = int 2"y"^2 xx 1/"y" "dy" + "c"`
∴ `"x"/"y" = 2 int "y" "dx" + "c"`
∴ `"x"/"y" = 2 * "y"^2/2 + "c"`
∴ x = y(c + y2)
This is the general solution.
APPEARS IN
संबंधित प्रश्न
Find the the differential equation for all the straight lines, which are at a unit distance from the origin.
For the differential equation, find the general solution:
`dy/dx + 2y = sin x`
For the differential equation, find the general solution:
`dy/dx + 3y = e^(-2x)`
For the differential equation, find the general solution:
`dy/dx + (sec x) y = tan x (0 <= x < pi/2)`
For the differential equation, find the general solution:
`x dy/dx + 2y= x^2 log x`
For the differential equation, find the general solution:
`x dy/dx + y - x + xy cot x = 0(x != 0)`
For the differential equation, find the general solution:
`(x + y) dy/dx = 1`
For the differential equation, find the general solution:
`(x + 3y^2) dy/dx = y(y > 0)`
For the differential equation given, find a particular solution satisfying the given condition:
`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`
The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.
The integrating factor of the differential equation.
`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.
Find the general solution of the differential equation `dy/dx - y = sin x`
Solve the differential equation `x dy/dx + y = x cos x + sin x`, given that y = 1 when `x = pi/2`
x dy = (2y + 2x4 + x2) dx
dx + xdy = e−y sec2 y dy
\[\frac{dy}{dx}\] + y cos x = sin x cos x
Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]
Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]
Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .
Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .
Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`
Solve the differential equation: (1 +x2 ) dy + 2xy dx = cot x dx
Solve the following differential equation:
`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`
Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.
Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.
Solution: The equation `("d"y)/("d"x) - y` = 2x
is of the form `("d"y)/("d"x) + "P"y` = Q
where P = `square` and Q = `square`
∴ I.F. = `"e"^(int-"d"x)` = e–x
∴ the solution of the linear differential equation is
ye–x = `int 2x*"e"^-x "d"x + "c"`
∴ ye–x = `2int x*"e"^-x "d"x + "c"`
= `2{x int"e"^-x "d"x - int square "d"x* "d"/("d"x) square"d"x} + "c"`
= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`
∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`
∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`
∴ `y + square + square` = cex is the required general solution of the given differential equation
The solution of `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0 is ______.
If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.
Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.
If the solution curve y = y(x) of the differential equation y2dx + (x2 – xy + y2)dy = 0, which passes through the point (1, 1) and intersects the line y = `sqrt(3) x` at the point `(α, sqrt(3) α)`, then value of `log_e (sqrt(3)α)` is equal to ______.
The solution of the differential equation `dx/dt = (xlogx)/t` is ______.
The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.