हिंदी

For the differential equation, find the general solution: dydx+3y=e-2x - Mathematics

Advertisements
Advertisements

प्रश्न

For the differential equation, find the general solution:

`dy/dx + 3y = e^(-2x)`

योग

उत्तर

`dy/dx + 3y = e^(- 2x)`    ...(i)

This is a linear differential equation of the form `dy/dx Py = Q` Here

P = 3 and Q = e-2x 

∴ I.F. = `e^(int P dx) = e^(int 3 dx) = e^(3x)`

The general solution of the fundamental equation,

y(I.F.) = ∫ Q × I.F. dx + C

ye3x = ∫ e-2x · e3x + C

ye3x = ∫ ex + C

ye3x = ex + C

y = e-2x + Ce-3x

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.6 [पृष्ठ ४१३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.6 | Q 2 | पृष्ठ ४१३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

For the differential equation, find the general solution:

`dy/dx + (sec x) y = tan x (0 <= x < pi/2)`


For the differential equation, find the general solution:

`(x + 3y^2) dy/dx = y(y > 0)`


Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.


Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`


Find the general solution of the differential equation `dy/dx - y = sin x`


x dy = (2y + 2x4 + x2) dx


\[\left( 2x - 10 y^3 \right)\frac{dy}{dx} + y = 0\]

(x + tan y) dy = sin 2y dx


dx + xdy = e−y sec2 y dy


\[\frac{dy}{dx}\] + y cos x = sin x cos x


\[\left( x^2 - 1 \right)\frac{dy}{dx} + 2\left( x + 2 \right)y = 2\left( x + 1 \right)\]

\[x\frac{dy}{dx} + 2y = x \cos x\]

Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]


Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]


Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .


Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` . 


If f(x) = x + 1, find `"d"/"dx"("fof") ("x")`


Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.


Solve the following differential equation:

`"dy"/"dx" + "y"/"x" = "x"^3 - 3`


Solve the following differential equation:

`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`


Solve the following differential equation:

`"dy"/"dx" + "y" * sec "x" = tan "x"`


Solve the following differential equation dr + (2r cot θ + sin 2θ) dθ = 0.


Solve the following differential equation:

`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`


Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.


The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.


Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.

Solution: The equation `("d"y)/("d"x) - y` = 2x

is of the form `("d"y)/("d"x) + "P"y` = Q

where P = `square` and Q = `square`

∴ I.F. = `"e"^(int-"d"x)` = e–x

∴ the solution of the linear differential equation is

ye–x = `int 2x*"e"^-x  "d"x + "c"`

∴ ye–x  = `2int x*"e"^-x  "d"x + "c"`

= `2{x int"e"^-x "d"x - int square  "d"x* "d"/("d"x) square"d"x} + "c"`

= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`

∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`

∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`

∴ `y + square + square` = cex is the required general solution of the given differential equation


The integrating factor of the differential equation sin y `("dy"/"dx")` = cos y(1 - x cos y) is ______.


Integrating factor of `dy/dx + y = x^2 + 5` is ______ 


Integrating factor of the differential equation `(1 - x^2) ("d"y)/("d"x) - xy` = 1 is ______.


The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is


Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.


If sec x + tan x is the integrating factor of `dy/dx + Py` = Q, then value of P is ______.


The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×