हिंदी

The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.

योग

उत्तर

Let A(x, y) be any point on the curve.

Then slope of the tangent to the curve at point A is `"dy"/"dx"`.

According to the given condition

x + y = `"dy"/"dx" + 5`

∴ `"dy"/"dx" - "y" = "x - 5"`     ...(1)

This is the linear differential equation of the form

`"dy"/"dx" + "P" * "y" = "Q"`, where P = - 1 and Q = x - 5

∴ I.F. = `"e"^(int "P dx") = "e"^(int -1 "dx") = "e"^-"x"`

∴ the solution of (1) is given by

`"y"*("I.F.") = int "Q" * ("I.F.") "dx" + "c"`

∴ `"y" * "e"^-"x" = int ("x - 5")"e"^-"x" "dx" + "c"`

∴ `"e"^-"x" * "y" = ("x - 5") int "e"^-"x" "dx" - int ["d"/"dx" ("x - 5") int "e"^-"x" "dx"] "dx" + "c"`

∴ `"e"^-"x" * "y" = ("x - 5") * "e"^-"x"/-1 - int 1 * "e"^-"x"/-1 "dx" + "c"`

∴ `"e"^-"x" * "y" = - ("x - 5") * "e"^-"x" + int "e"^-"x" "dx" + "c"`

∴ `"e"^-"x" * "y" = - ("x - 5")"e"^-"x" + "e"^-"x"/-1 + "c"`

∴ y = - (x - 5) - 1 + cex

∴ y = - x + 5 - 1 + cex

∴ y = 4 - x + ce     ....(2)

This is the general equation of the curve.

But the required curve is passing through the point (0, 2).

∴  by putting x = 0, y = 2 in (2), we get

2 = 4 - 0 + c

∴ c = - 2

∴ from (2), the equation of the required curve is
y = 4 - x - 2e

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Exercise 6.5 [पृष्ठ २०७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Exercise 6.5 | Q 4 | पृष्ठ २०७

संबंधित प्रश्न

For the differential equation, find the general solution:

`dy/dx + 3y = e^(-2x)`


For the differential equation, find the general solution:

`x dy/dx +  2y= x^2 log x`


For the differential equation, find the general solution:

`x log x dy/dx + y=    2/x log x`


For the differential equation, find the general solution:

y dx + (x – y2) dy = 0


For the differential equation, find the general solution:

`(x + 3y^2) dy/dx = y(y > 0)`


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx - 3ycotx = sin 2x; y = 2`  when `x = pi/2`


Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.


Solve the differential equation `x dy/dx + y = x cos x + sin x`,  given that y = 1 when `x = pi/2`


(x + tan y) dy = sin 2y dx


\[\frac{dy}{dx}\] + y cos x = sin x cos x


\[\frac{dy}{dx} + 2y = x e^{4x}\]

Solve the differential equation \[\left( x + 2 y^2 \right)\frac{dy}{dx} = y\], given that when x = 2, y = 1.


Find the general solution of the differential equation \[x\frac{dy}{dx} + 2y = x^2\]


Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]


Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .


Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .


Solve the differential equation: (1 +x) dy + 2xy dx = cot x dx 


If f(x) = x + 1, find `"d"/"dx"("fof") ("x")`


Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.


Solve the following differential equation:

`"dy"/"dx" + "y"/"x" = "x"^3 - 3`


Solve the following differential equation:

`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`


Solve the following differential equation dr + (2r cot θ + sin 2θ) dθ = 0.


Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.


The integrating factor of `(dy)/(dx) + y` = e–x is ______.


Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.

Solution: The equation `("d"y)/("d"x) - y` = 2x

is of the form `("d"y)/("d"x) + "P"y` = Q

where P = `square` and Q = `square`

∴ I.F. = `"e"^(int-"d"x)` = e–x

∴ the solution of the linear differential equation is

ye–x = `int 2x*"e"^-x  "d"x + "c"`

∴ ye–x  = `2int x*"e"^-x  "d"x + "c"`

= `2{x int"e"^-x "d"x - int square  "d"x* "d"/("d"x) square"d"x} + "c"`

= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`

∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`

∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`

∴ `y + square + square` = cex is the required general solution of the given differential equation


The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.


The slope of the tangent to the curves x = 4t3 + 5, y = t2 - 3 at t = 1 is ______


Which of the following is a second order differential equation?


Integrating factor of the differential equation `(1 - x^2) ("d"y)/("d"x) - xy` = 1 is ______.


The equation x2 + yx2 + x + y = 0 represents


Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.


If the solution curve y = y(x) of the differential equation y2dx + (x2 – xy + y2)dy = 0, which passes through the point (1, 1) and intersects the line y = `sqrt(3)  x` at the point `(α, sqrt(3) α)`, then value of `log_e (sqrt(3)α)` is equal to ______.


Find the general solution of the differential equation:

`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`


Solve:

`xsinx dy/dx + (xcosx + sinx)y` = sin x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×