हिंदी

Solve the Following Differential Equation: ( Cot − 1 Y + X ) D Y = ( 1 + Y 2 ) D X . - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .

उत्तर

The given differential equation is \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\]

This differential equation can be written as

\[\frac{dx}{dy} = \frac{\cot^{- 1} y + x}{1 + y^2} \]

\[ \Rightarrow \frac{dx}{dy} + \left( - \frac{1}{1 + y^2} \right)x = \frac{\cot^{- 1} y}{1 + y^2}\]

This is a linear differential equation with \[P = - \frac{1}{1 + y^2} \text { and } Q = \frac{\cot^{- 1} y}{1 + y^2}\].

\[e^{- \int\frac{1}{1 + y^2}dy} = e^{\cot^{- 1}} y\]

Multiply the differential equation by integration factor (I.F.), we get

\[\frac{dx}{dy} e^{\cot^{- 1}} y - \frac{x}{\left( 1 + y^2 \right)} e^{\cot^{- 1}} y = \frac{\cot^{- 1} y}{\left( 1 + y^2 \right)} e^{\cot^{- 1}} y \]

\[ \Rightarrow \frac{d}{dy}\left( x e^{\cot^{- 1}} y \right) = \frac{\cot^{- 1} y}{\left( 1 + y^2 \right)} e^{\cot^{- 1}} y\]

Integrating both sides with respect y, we get

\[x e^{\cot^{- 1}} y = \int\frac{\cot^{- 1} y}{\left( 1 + y^2 \right)} e^{\cot^{- 1}} y dy + C\]

Putting

\[t = \cot^{- 1} y\] and \[dt = - \frac{1}{1 + y^2}dy\] we get

\[x e^{\cot^{- 1}} y = - \int t e^t dt + C\]

\[ \Rightarrow x e^{\cot^{- 1}} y = - e^t \left( t - 1 \right) + C\]

\[ \Rightarrow x e^{\cot^{- 1}} y = e^{\cot^{- 1}} y \left( 1 - \cot^{- 1} y \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) Foreign Set 2

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

For the differential equation, find the general solution:

`(x + y) dy/dx = 1`


The integrating factor of the differential equation.

`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.


Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`


Find the general solution of the differential equation `dy/dx - y = sin x`


\[\frac{dy}{dx} + y \tan x = x^2 \cos^2 x\]

x dy = (2y + 2x4 + x2) dx


(x + tan y) dy = sin 2y dx


\[\frac{dy}{dx}\] = y tan x − 2 sin x


\[\frac{dy}{dx}\] + y cos x = sin x cos x


\[x\frac{dy}{dx} + 2y = x \cos x\]

\[\frac{dy}{dx} - y = x e^x\]

Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]


Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .


Solve the differential equation: (1 +x) dy + 2xy dx = cot x dx 


If f(x) = x + 1, find `"d"/"dx"("fof") ("x")`


Solve the following differential equation:

`"dy"/"dx" + "y"/"x" = "x"^3 - 3`


Solve the following differential equation:

`("x" + 2"y"^3) "dy"/"dx" = "y"`


Solve the following differential equation:

`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`


Solve the following differential equation:

`("x + y") "dy"/"dx" = 1`


Solve the following differential equation:

y dx + (x - y2) dy = 0


The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.


Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.


The integrating factor of `(dy)/(dx) + y` = e–x is ______.


The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.


Which of the following is a second order differential equation?


Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.


Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.


Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.


The solution of the differential equation `dx/dt = (xlogx)/t` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×