Advertisements
Advertisements
प्रश्न
The integrating factor of the differential equation.
`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.
विकल्प
`1/(y^2 - 1)`
`1/sqrt(y^2 - 1)`
`1/(1 - y^2)`
`1/sqrt(1 - y^2)`
उत्तर
The integrating factor of the differential equation.
`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is `underline(1/sqrt(1 - y^2)).`
Explanation:
The differential equation is,
`(1 – y^2)dy/dx + yx = ay`
or `dx/dy + y/(1 - y^2) x = y/(1 - y^2)`
Comparing with `dx/dy + Px = Q`,
`P = y/(1 - y^2), Q = y/(1 - y^2)`
`int P dx = int y/(1 - y^2) dy`
`= e^(- 1/2 int (- 2y)/(1 - y^2) dy)`
Let `= - 1/2 int (- 2y)/(1 - y^2) dy`
`1 - y^2` = t
∴ - 2y dy = dt
`= - 1/2 int dt/t = - 1/2 log t`
`= - 1/2 log (1 - y^2)`
`= log 1/sqrt(1 - y^2)`
`I.F. = e^(int P dx) = e^(log 1 sqrt(1 - y^2))`
`= 1/sqrt(1 - y^2)`
APPEARS IN
संबंधित प्रश्न
For the differential equation, find the general solution:
`dy/dx + (sec x) y = tan x (0 <= x < pi/2)`
For the differential equation, find the general solution:
`x log x dy/dx + y= 2/x log x`
For the differential equation, find the general solution:
`(x + y) dy/dx = 1`
For the differential equation, find the general solution:
y dx + (x – y2) dy = 0
For the differential equation given, find a particular solution satisfying the given condition:
`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`
For the differential equation given, find a particular solution satisfying the given condition:
`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0` when x = 1
The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.
The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?
Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`
Solve the differential equation `x dy/dx + y = x cos x + sin x`, given that y = 1 when `x = pi/2`
dx + xdy = e−y sec2 y dy
\[\frac{dy}{dx}\] = y tan x − 2 sin x
\[\frac{dy}{dx}\] + y cos x = sin x cos x
Solve the differential equation \[\left( x + 2 y^2 \right)\frac{dy}{dx} = y\], given that when x = 2, y = 1.
Solve the following differential equation:- \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\]
Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .
Solve the following differential equation:-
\[\left( 1 + x^2 \right)\frac{dy}{dx} - 2xy = \left( x^2 + 2 \right)\left( x^2 + 1 \right)\]
Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` .
Solve the following differential equation:
`("x" + 2"y"^3) "dy"/"dx" = "y"`
Solve the following differential equation:
`"dy"/"dx" + "y" * sec "x" = tan "x"`
Solve the following differential equation:
`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`
Solve the following differential equation:
`("x + y") "dy"/"dx" = 1`
Solve the following differential equation:
`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`
Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.
The integrating factor of `(dy)/(dx) + y` = e–x is ______.
Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.
Solution: The equation `("d"y)/("d"x) - y` = 2x
is of the form `("d"y)/("d"x) + "P"y` = Q
where P = `square` and Q = `square`
∴ I.F. = `"e"^(int-"d"x)` = e–x
∴ the solution of the linear differential equation is
ye–x = `int 2x*"e"^-x "d"x + "c"`
∴ ye–x = `2int x*"e"^-x "d"x + "c"`
= `2{x int"e"^-x "d"x - int square "d"x* "d"/("d"x) square"d"x} + "c"`
= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`
∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`
∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`
∴ `y + square + square` = cex is the required general solution of the given differential equation
The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.
The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is
Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.
If sin x is the integrating factor (IF) of the linear differential equation `dy/dx + Py` = Q then P is ______.
The solution of the differential equation `dx/dt = (xlogx)/t` is ______.