हिंदी

Solve the following differential equation: x + ydydx(x + y)dydx=1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:

`("x + y") "dy"/"dx" = 1`

योग

उत्तर

`("x + y") "dy"/"dx" = 1`

∴ `"dx"/"dy" = "x + y"`

∴ `"dx"/"dy" - "x" = "y"`

∴ `"dx"/"dy" + (- 1)"x" = "y"`      ....(1)

This is the linear differential equation of the form

`"dx"/"dy" + "P"*"x" = "Q",` where P = - 1 and Q = y

∴ I.F. = `"e"^(int "P dy") = "e"^(int - 1 "dy") = "e"^-"y"`

∴ the solution of (1) is given by

x.(I.F.) = `int "Q" * ("I.F.") "dy" + "c"`

∴ `"x" * "e"^-"y" = int "y" * "e"^-"y" "dy" + "c"`

∴ `"e"^-"y" * "x" = "y" int "e"^-"y" "dy" - int ["d"/"dx" ("y") int "e"^-"y" "dy"] "dy" + "c"`

`= "y" * ("e"^-"y")/-1 - int 1 * ("e"^-"y")/-1 "dy" + "c"`

`= - "ye"^-"y" + int "e"^-"y" "dy" + "c"`

∴ `"e"^-"y" * "x" = - "ye"^-"y" + "e"^-"y"/-1 + "c"`

∴ `"e"^-"y" * "x" + "ye"^-"y" + "e"^-"y" = "c"`

∴ `"e"^"-y" ("x + y + 1") = "c"`

∴ x + y + 1 = cey 

This is the general solution.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Exercise 6.5 [पृष्ठ २०६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Exercise 6.5 | Q 1.06 | पृष्ठ २०६

संबंधित प्रश्न

Find the the differential equation for all the straight lines, which are at a unit distance from the origin.


For the differential equation, find the general solution:

`dy/dx + (sec x) y = tan x (0 <= x < pi/2)`


For the differential equation, find the general solution:

`x log x dy/dx + y=    2/x log x`


For the differential equation, find the general solution:

`(x + y) dy/dx = 1`


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx - 3ycotx = sin 2x; y = 2`  when `x = pi/2`


The integrating factor of the differential equation.

`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.


The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?


Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`


\[\frac{dy}{dx} + y \tan x = x^2 \cos^2 x\]

\[\left( 2x - 10 y^3 \right)\frac{dy}{dx} + y = 0\]

\[\frac{dy}{dx}\] = y tan x − 2 sin x


\[\frac{dy}{dx} - y = x e^x\]

Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]


Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .


Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .


Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.


Solve the following differential equation:

`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`


Solve the following differential equation:

`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`


Solve the following differential equation dr + (2r cot θ + sin 2θ) dθ = 0.


Solve the following differential equation:

y dx + (x - y2) dy = 0


Solve the following differential equation:

`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`


Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.


The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.


The integrating factor of `(dy)/(dx) + y` = e–x is ______.


The slope of the tangent to the curves x = 4t3 + 5, y = t2 - 3 at t = 1 is ______


Integrating factor of `dy/dx + y = x^2 + 5` is ______ 


The solution of `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0 is ______.


The equation x2 + yx2 + x + y = 0 represents


The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is


The integrating factor of differential equation `(1 - y)^2  (dx)/(dy) + yx = ay(-1 < y < 1)`


Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.


If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.


Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.


Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.


Let y = y(x) be the solution curve of the differential equation `(dy)/(dx) + ((2x^2 + 11x + 13)/(x^3 + 6x^2 + 11x + 6)) y = ((x + 3))/(x + 1), x > - 1`, which passes through the point (0, 1). Then y(1) is equal to ______.


Find the general solution of the differential equation:

`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×