Advertisements
Advertisements
प्रश्न
The solution of `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0 is ______.
उत्तर
The solution of `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0 is y = `4/3 x^3/((1 + x^2)) + "c" (1 + x^2)^-1`.
Explanation:
The given differential equation is `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0
⇒ `("d"y)/("d"x) + (2xy)/(1 + x^2) = (4x^2)/(1 + x^2)`
Since it is a linear differential equation
∴ P = `(2x)/(1 + x^2)` and Q = `(4x^2)/(1 + x^2)`
Integrating factor I.F. = `"e"^(int Pdx)`
= `"e"^(int (2x)/(1 + x^2) "d"x)`
= `"e"^(log(1 + x^2))`
= `(1 + x^2)`
∴ Solution is `y xx "I"."F" = int "Q" xx "I"."F". "d"x + "c"`
⇒ `y xx (1 + x^2) = int (4x)/(1 + x^2) xx (1 + x^2)"d"x + "c"`
⇒ `y xx (1 + x^2) = int 4x^2 "d"x + "c"`
⇒ `y xx (1 + x^2) = 4/3 x^3 + "c"`
⇒ y = `4/3 x^3/((1 + x^2)) + "c"(1 + x^2)^-1`
APPEARS IN
संबंधित प्रश्न
Find the the differential equation for all the straight lines, which are at a unit distance from the origin.
For the differential equation, find the general solution:
`x dy/dx + 2y= x^2 log x`
For the differential equation, find the general solution:
`x log x dy/dx + y= 2/x log x`
Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.
The integrating factor of the differential equation.
`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.
The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?
Find the general solution of the differential equation `dy/dx - y = sin x`
Solve the differential equation `x dy/dx + y = x cos x + sin x`, given that y = 1 when `x = pi/2`
Find the general solution of the differential equation \[x\frac{dy}{dx} + 2y = x^2\]
Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]
Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].
Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .
Solve the differential equation: (1 +x2 ) dy + 2xy dx = cot x dx
Solve the following differential equation:
`("x" + 2"y"^3) "dy"/"dx" = "y"`
Solve the following differential equation:
`"dy"/"dx" + "y" * sec "x" = tan "x"`
Solve the following differential equation dr + (2r cot θ + sin 2θ) dθ = 0.
Solve the following differential equation:
y dx + (x - y2) dy = 0
Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.
Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.
Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.
`(x + 2y^3 ) dy/dx = y`
Integrating factor of the differential equation `(1 - x^2) ("d"y)/("d"x) - xy` = 1 is ______.
State whether the following statement is true or false.
The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.
If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.
Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.
Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.
Solve:
`xsinx dy/dx + (xcosx + sinx)y` = sin x