हिंदी

( 2 X − 10 Y 3 ) D Y D X + Y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\left( 2x - 10 y^3 \right)\frac{dy}{dx} + y = 0\]
योग

उत्तर

We have,
\[\left( 2x - 10 y^3 \right)\frac{dy}{dx} + y = 0\]
\[ \Rightarrow \left( 2x - 10 y^3 \right)\frac{dy}{dx} = - y \]
\[ \Rightarrow \frac{dx}{dy} = - \frac{1}{y}\left( 2x - 10 y^3 \right) \]
\[ \Rightarrow \frac{dx}{dy} + \frac{2}{y}x = 10 y^2 . . . . . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form 
\[\frac{dx}{dy} + Px = Q\]
where
\[P = \frac{2}{y}\]
\[Q = 10 y^2 \]
\[ \therefore I.F. = e^{\int P\ dy} \]
\[ = e^{\int\frac{2}{y}dy} \]
\[ = e^{2\log y} = y^2 \]
\[\text{ Multiplying both sides of  }\left( 1 \right)\text{ by }y^2 , \text{ we get }\]
\[ y^2 \left( \frac{dx}{dy} + \frac{2}{y}x \right) = y^2 \times 10 y^2 \]
\[ \Rightarrow y^2 \frac{dx}{dy} + \frac{2}{y}x y^2 = 10 y^4 \]
Integrating both sides with respect to y, we get
\[x y^2 = \int 10 y^4 dy + C\]
\[ \Rightarrow x y^2 = 2 y^5 + C\]
\[ \Rightarrow x = 2 y^3 + C y^{- 2} \]
\[\text{Hence, }x = 2 y^3 + C y^{- 2} \text{ is the required solution.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.10 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.10 | Q 24 | पृष्ठ १०६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

For the differential equation, find the general solution:

`dy/dx  + 2y = sin x`


For the differential equation, find the general solution:

`cos^2 x dy/dx + y = tan x(0 <= x < pi/2)`


For the differential equation, find the general solution:

`x log x dy/dx + y=    2/x log x`


The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?


Solve the differential equation `x dy/dx + y = x cos x + sin x`,  given that y = 1 when `x = pi/2`


x dy = (2y + 2x4 + x2) dx


\[\frac{dy}{dx}\] + y cos x = sin x cos x


\[\left( x^2 - 1 \right)\frac{dy}{dx} + 2\left( x + 2 \right)y = 2\left( x + 1 \right)\]

\[x\frac{dy}{dx} + 2y = x \cos x\]

Find the general solution of the differential equation \[x\frac{dy}{dx} + 2y = x^2\]


Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`


Solve the following differential equation dr + (2r cot θ + sin 2θ) dθ = 0.


Solve the following differential equation:

y dx + (x - y2) dy = 0


Solve the following differential equation:

`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`


Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.


Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.


Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.

Solution: The equation `("d"y)/("d"x) - y` = 2x

is of the form `("d"y)/("d"x) + "P"y` = Q

where P = `square` and Q = `square`

∴ I.F. = `"e"^(int-"d"x)` = e–x

∴ the solution of the linear differential equation is

ye–x = `int 2x*"e"^-x  "d"x + "c"`

∴ ye–x  = `2int x*"e"^-x  "d"x + "c"`

= `2{x int"e"^-x "d"x - int square  "d"x* "d"/("d"x) square"d"x} + "c"`

= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`

∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`

∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`

∴ `y + square + square` = cex is the required general solution of the given differential equation


The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.


Integrating factor of `dy/dx + y = x^2 + 5` is ______ 


Integrating factor of the differential equation `(1 - x^2) ("d"y)/("d"x) - xy` = 1 is ______.


The solution of `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0 is ______.


The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is


State whether the following statement is true or false.

The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.


If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.


Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.


Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.


Let y = y(x) be the solution curve of the differential equation `(dy)/(dx) + ((2x^2 + 11x + 13)/(x^3 + 6x^2 + 11x + 6)) y = ((x + 3))/(x + 1), x > - 1`, which passes through the point (0, 1). Then y(1) is equal to ______.


If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.


If sin x is the integrating factor (IF) of the linear differential equation `dy/dx + Py` = Q then P is ______.


Solve the differential equation `dy/dx+2xy=x` by completing the following activity.

Solution: `dy/dx+2xy=x`       ...(1)

This is the linear differential equation of the form `dy/dx +Py =Q,"where"`

`P=square` and Q = x

∴ `I.F. = e^(intPdx)=square`

The solution of (1) is given by

`y.(I.F.)=intQ(I.F.)dx+c=intsquare  dx+c`

∴ `ye^(x^2) = square`

This is the general solution.


The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.


The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×