Advertisements
Advertisements
प्रश्न
If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.
विकल्प
y = `tan^-1 log(e/x)`
y = `e^(1+cot (y/x))`
y = `x tan^-1 log(e/x)`
y = `e^(1 + tan(y/x)`
MCQ
रिक्त स्थान भरें
उत्तर
If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is `underlinebb(y = x tan^-1 log(e/x))`.
Explanation:
Given, `dy/dx = y/x - cos^2(y/x)`
Putting y = vx so that `dy/dx = v + x (dv)/dx`
We get, `v + x (dv)/dx` = v – cos2 v
`\implies (dv)/(cos^2v) = -(dv)/x`
`\implies` sec2 v dv = `-dx/x`
Integrating, we get, tan v = – ln x + ln c
`tan(y/x)` = – ln x + ln c
This passes through `(1, π/4)` `\implies` ln c = 1
∴ y = `xtan^-1(log e/x)`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?