मराठी

If the slope of the tangent at (x, y) to a curve passing through π(1,π4) is given by yx-cos2(yx), then the equation of the curve is ______. -

Advertisements
Advertisements

प्रश्न

If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.

पर्याय

  • y = `tan^-1 log(e/x)`

  • y = `e^(1+cot (y/x))`

  • y = `x tan^-1 log(e/x)`

  • y = `e^(1 + tan(y/x)`

MCQ
रिकाम्या जागा भरा

उत्तर

If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is `underlinebb(y = x  tan^-1 log(e/x))`.

Explanation:

Given, `dy/dx = y/x - cos^2(y/x)`

Putting y = vx so that `dy/dx = v + x (dv)/dx`

We get, `v + x (dv)/dx` = v – cos2 v

`\implies (dv)/(cos^2v) = -(dv)/x`

`\implies` sec2 v dv = `-dx/x`

Integrating, we get, tan v = – ln x + ln c

`tan(y/x)` = – ln x + ln c

This passes through `(1, π/4)` `\implies` ln c = 1

∴ y = `xtan^-1(log  e/x)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×