हिंदी

Solve the Following Differential Equation : Y 2 D X + ( X 2 − X Y + Y 2 ) D Y = 0 . - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .

उत्तर

We have,

\[y^2 dx + \left( x^2 - xy + y^2 \right) dy = 0\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- y^2}{x^2 - xy + y^2}\]

This is homogeneous differential equation.
Putting

\[y = vx \text { and} \frac{dy}{dx} = v + x\frac{dv}{dx}, \text { we get }\]

\[v + x\frac{dv}{dx} = \frac{- v^2 x^2}{x^2 - v x^2 + v^2 x^2}\]

\[ \Rightarrow v + x\frac{dv}{dx} = \frac{- v^2}{1 - v + v^2}\]

\[ \Rightarrow x\frac{dv}{dx} = \frac{- v^2}{1 - v + v^2} - v\]

\[\Rightarrow x\frac{dv}{dx} = \frac{- v - v^3}{1 - v + v^2}\]

\[ \Rightarrow \frac{1 - v + v^2}{v + v^3}dv = - \frac{1}{x}dx\]

\[ \Rightarrow \frac{1 + v^2 - v}{v\left( 1 + v^2 \right)}dv = - \frac{1}{x}dx\]

Integrating both sides, we have

\[\int\frac{1 + v^2 - v}{v\left( 1 + v^2 \right)}dv = - \int\frac{1}{x}dx\]

\[ \Rightarrow \int\frac{1 + v^2}{v\left( 1 + v^2 \right)}dv - \int\frac{v}{v\left( 1 + v^2 \right)}dv = - \int\frac{1}{x}dx\]

\[ \Rightarrow \int\frac{1}{v}dv - \int\frac{1}{1 + v^2}dv = - \int\frac{1}{x}dx\]

\[ \Rightarrow \log\left| v \right| - \tan^{- 1} v = - \log\left| x \right| + \log C\]

\[\Rightarrow \log \left| \frac{vx}{C} \right| = \tan^{- 1} v\]

\[ \Rightarrow \left| \frac{vx}{C} \right| = e^{\tan^{- 1}} v \]

\[\text { Putting } v = \frac{y}{x}, \text { we get }\]

\[ \Rightarrow \left| y \right| = C e^{\tan^{- 1}} v\]

Hence, 

\[\left| y \right| = C e^{\tan^{- 1} } v\]  is a required solution.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) Foreign Set 2

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[x^2 \left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + y^4 = 0\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


(ey + 1) cos x dx + ey sin x dy = 0


\[x\frac{dy}{dx} + \cot y = 0\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

y (1 + ex) dy = (y + 1) ex dx


\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Solve the following differential equation.

dr + (2r)dθ= 8dθ


Solve:

(x + y) dy = a2 dx


 `dy/dx = log x`


Solve the differential equation xdx + 2ydy = 0


Solve: `("d"y)/("d"x) + 2/xy` = x2 


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×