Advertisements
Advertisements
प्रश्न
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
उत्तर
\[I = \int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx = \sin^{- 1} x\int\frac{x}{\sqrt{1 - x^2}}dx - \int\left[ \frac{d}{dx}\left( \sin^{- 1} x \right)\int\frac{x}{\sqrt{1 - x^2}}dx \right]dx\] parts)
Firstly, let us evaluate the integral \[\int\frac{x}{\sqrt{1 - x^2}}dx\] .
Put
\[t = 1 - x^2\] and \[dt = - 2x dx\] .
So,
\[\int\frac{x}{\sqrt{1 - x^2}}dx = - \frac{1}{2}\int\frac{dt}{\sqrt{t}} = - \sqrt{t} = - \sqrt{1 - x^2}\]
\[\therefore I = \int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]
\[ = \sin^{- 1} x\left( - \sqrt{1 - x^2} \right) - \int\frac{1}{\sqrt{1 - x^2}}\left( - \sqrt{1 - x^2} \right)dx\]
\[ = - \sqrt{1 - x^2} \sin^{- 1} x + \int dx\]
\[ = - \sqrt{1 - x^2} \sin^{- 1} x + x + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is