हिंदी

Find : ∫ X Sin − 1 X √ 1 − X 2 D X . - Mathematics

Advertisements
Advertisements

प्रश्न

Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .

उत्तर

\[I = \int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx = \sin^{- 1} x\int\frac{x}{\sqrt{1 - x^2}}dx - \int\left[ \frac{d}{dx}\left( \sin^{- 1} x \right)\int\frac{x}{\sqrt{1 - x^2}}dx \right]dx\] parts)

Firstly, let us evaluate the integral \[\int\frac{x}{\sqrt{1 - x^2}}dx\] .

Put 

\[t = 1 - x^2\] and \[dt = - 2x dx\] .

So,

\[\int\frac{x}{\sqrt{1 - x^2}}dx = - \frac{1}{2}\int\frac{dt}{\sqrt{t}} = - \sqrt{t} = - \sqrt{1 - x^2}\]

\[\therefore I = \int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[ = \sin^{- 1} x\left( - \sqrt{1 - x^2} \right) - \int\frac{1}{\sqrt{1 - x^2}}\left( - \sqrt{1 - x^2} \right)dx\]

\[ = - \sqrt{1 - x^2} \sin^{- 1} x + \int dx\]

\[ = - \sqrt{1 - x^2} \sin^{- 1} x + x + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) Foreign Set 2

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


Evaluate: `intsinsqrtx/sqrtxdx`

 


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


If `f(x) = int_0^pi t sin  t  dt`, then f' (x) is ______.


`int 1/(1 + cos x)` dx = _____

A) `tan(x/2) + c`

B) `2 tan (x/2) + c`

C) -`cot (x/2) + c`

D) -2 `cot (x/2)` + c


Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`


Evaluate of the following integral: 

\[\int x^\frac{5}{4} dx\]

Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate: 

\[\int\sqrt{\frac{1 + \cos 2x}{2}}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×