हिंदी

∫π−π (cos ax−sin bx)2 dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`

उत्तर

 

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`

`=∫_(-pi)^pi(cos^2ax+sin^2bx-2cosaxsinbx)dx`

`=∫_(-pi)^picos^2axdx+∫_(-pi)^pisin^2bxdx-∫_(-pi)^pi2cosaxsinbxdx`

`=2∫_(0)^picos^2axdx+2∫_(0)^pisin^2bxdx-0` [ Since cos2ax and sin2bx are even functions and cosaxsinbx is an odd function.]

`=2∫_(0)^pi(1+cos2ax)/2dx+2∫_(0)^pi(1-cos2bx)/2dx`

`=∫_(0)^pi (1+cos2ax) dx+∫_(0)^pi (1−cos2bx) dx`

`=∫_(0)^pi(1+cos2ax+1−cos2bx)dx`

`=∫_(0)^pi(2+cos2ax−cos2bx)dx`

`=2[x]_0^pi +[(sin2ax)/(2a)]_0^pi−[(sin2bx)/(2b)]_0^pi`

`=2π+(sin2aπ)/(2a)−(sin2bπ)/(2b)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

 

Evaluate `int_(-1)^2|x^3-x|dx`

 

 

find `∫_2^4 x/(x^2 + 1)dx`

 

Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


Evaluate the integral by using substitution.

`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`


Evaluate of the following integral: 

\[\int\frac{1}{x^5}dx\]

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate:

\[\int\frac{e\log \sqrt{x}}{x}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Find: `int (dx)/sqrt(3 - 2x - x^2)`


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Evaluate: `int x/(x^2 + 1)"d"x`


If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×