Advertisements
Advertisements
प्रश्न
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
उत्तर
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
`=∫_(-pi)^pi(cos^2ax+sin^2bx-2cosaxsinbx)dx`
`=∫_(-pi)^picos^2axdx+∫_(-pi)^pisin^2bxdx-∫_(-pi)^pi2cosaxsinbxdx`
`=2∫_(0)^picos^2axdx+2∫_(0)^pisin^2bxdx-0` [ Since cos2ax and sin2bx are even functions and cosaxsinbx is an odd function.]
`=2∫_(0)^pi(1+cos2ax)/2dx+2∫_(0)^pi(1-cos2bx)/2dx`
`=∫_(0)^pi (1+cos2ax) dx+∫_(0)^pi (1−cos2bx) dx`
`=∫_(0)^pi(1+cos2ax+1−cos2bx)dx`
`=∫_(0)^pi(2+cos2ax−cos2bx)dx`
`=2[x]_0^pi +[(sin2ax)/(2a)]_0^pi−[(sin2bx)/(2b)]_0^pi`
`=2π+(sin2aπ)/(2a)−(sin2bπ)/(2b)`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-1)^2|x^3-x|dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Find: `int (dx)/sqrt(3 - 2x - x^2)`
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate: `int x/(x^2 + 1)"d"x`
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.