Advertisements
Advertisements
प्रश्न
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.
उत्तर
Given `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`
Put x6 = t
6x5 dx = dt
x5 dt = `"dt"/6` ...(i)
⇒ `int cos "t" "dt"/6` = k sin (x6) + C
⇒ `1/6` sin t + C = k sin (x6) + C
⇒ `1/6 sin (x^6) + "C" = "k" sin (x^6) + "C"`
On equating,
k = `1/6`
APPEARS IN
संबंधित प्रश्न
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
`int_0^1 x(1 - x)^5 "dx" =` ______.
`int_0^(pi4) sec^4x "d"x` = ______.
Evaluate: `int x/(x^2 + 1)"d"x`