Advertisements
Advertisements
प्रश्न
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
उत्तर
Let `I = int_0^(pi/2) sqrtsin phi cos^5 phi d phi`
`int_0^(pi/2) sin^(1/2) phi cos^4 phi cos phi d phi`
`int_0^(pi/2) sin^(1/2) phi. (1 - sin^2 phi)^2 . cos phi d phi`
On substituting `sin phi = t`,
`cos phi d phi = dt` and `phi = 0, t = 0,` When `phi = pi/2 t = 1`
Hence, `I = int_0^1 t^(1/2) (1 - t^2)^2 dt`
`I = int_0^1 t^(1/2) (1 + t^4 - 2t^2) dt`
`= int_0^1 (t^(1/2) + t^(9/2) - 2t^(5/2)) dt`
`= 2/3 [t^3]_0^1 + 2/11 [t^(11/2)]_0^1 - 2 xx 2/7 [t^(7/2)]_0^1`
`= 2/3 + 2/11 - 4/7`
`= (154 + 42 - 132)/231`
`= 64/231`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Find: `int (dx)/sqrt(3 - 2x - x^2)`
`int_0^1 x^2e^x dx` = ______.
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.