Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\int_0^{2\pi} \left| \sin x \right| d x\]
\[\text{We know that}, \left| \sin x \right| = \begin{cases} - \sin x &,& \pi \leq x \leq 2\pi\\\sin x&,& 0 < x \leq \pi\end{cases}\]
\[ \therefore I = \int_0^{2\pi} \left| \sin x \right| dx\]
\[ \Rightarrow I = \int_0^\pi \sin x dx + \int_\pi^{2\pi} - \sin x dx\]
\[ \Rightarrow I = - \left[ \cos x \right]_0^\pi + \left[ \cos x \right]_\pi^{2\pi} \]
\[ \Rightarrow I = 1 + 1 + 1 - \left( - 1 \right)\]
\[ \Rightarrow I = 4\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate: `intsinsqrtx/sqrtxdx`
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Find: `int (dx)/sqrt(3 - 2x - x^2)`
`int_0^1 x^2e^x dx` = ______.
Evaluate:
`int (1 + cosx)/(sin^2x)dx`