Advertisements
Advertisements
प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
उत्तर
`int(1+logx)/(x(2+logx)(3+logx))dx`
Substitute logx = t..................(1)
`therefore 1/xdx=dt`
Hence, the integral becomes
`int(1+t)/((2+t)(3+t))dt`
`=int(2+t-1)/((2+t)(3+t))dt`
`=int(2+t)/((2+t)(3+t))dt-int1/((2+t)(3+t))dt`
`=int1/(3+t)dt-int((t+3)-(t+2))/((2+t)(3+t))dt`
`=int1/(3+t)dt-[int(t+3)/((2+t)(3+t))dt-int(t+2)/((2+t)(3+t))dt]`
`=int1/(3+t)dt-int1/(2+t)dt+int1/(3+t)dt`
`=2int1/(3+t)dt-int1/(2+t)dt`
`=2int1/(3+t)dt-int1/(2+t)dt`
Substituting the value of 't' from (1), we get
`int(1+logx)/(x(2+logx)(3+logx))dx`
`2ln (3+ logx )-ln( 2+ logx)+ C`
`=log|(3+logx)^2/(2 + logx)| + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int1/(3+5cosx)dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate :
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Evaluate :
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
Evaluate: `int x/(x^2 + 1)"d"x`