Advertisements
Advertisements
प्रश्न
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
उत्तर
= `int_1^5 {| x - 1| + | x - 2| + |x - 3|} dx`
= `int_1^5 (x - 1)dx + int_1^2 (2 - x)dx + int_2^5 (x - 2) dx + int_1^3 (3 - x) dx + int_3^5 ( x - 3) dx`
= `[x^2/2 - x]_1^5 + [2x - x^2/2]_1^2 + [x^2/2 - 2x]_2^5 + [3x - x^2/2]_1^3 + [x^2/3 - 3x]_3^5`
= 17
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
Find: `int (dx)/sqrt(3 - 2x - x^2)`
`int_0^1 x^2e^x dx` = ______.
Evaluate:
`int (1 + cosx)/(sin^2x)dx`