Advertisements
Advertisements
प्रश्न
Evaluate each of the following integral:
उत्तर
\[\text{Let I} =\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx.................\left(1\right)\]
Then,
\[I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 \left[ \frac{\pi}{2} + \left( - \frac{\pi}{2} \right) - x \right]}{1 + e^\left[ \frac{\pi}{2} + \left( - \frac{\pi}{2} \right) - x \right]}dx ........................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 \left( - x \right)}{1 + e^{- x}}dx\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{e^x \cos^2 x}{e^x + 1}dx .................... \left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{\cos^2 x}{1 + e^x} + \frac{e^x \cos^2 x}{1 + e^x} \right)dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x\left( 1 + e^x \right)}{1 + e^x}dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos^2 xdx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{1 + \cos2x}{2} \right)dx\]
\[\Rightarrow 2I = \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx + \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2xdx\]
\[ \Rightarrow 2I = \left.\frac{1}{2} \times x\right|_{- \frac{\pi}{2}}^\frac{\pi}{2} + \frac{1}{2} \left.\times \frac{\sin2x}{2}\right|_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ \Rightarrow 2I = \frac{1}{2}\left[ \frac{\pi}{2} - \left( - \frac{\pi}{2} \right) \right] + \frac{1}{4}\left[ \sin\pi - \sin\left( - \pi \right) \right]\]
\[ \Rightarrow 2I = \frac{1}{2} \times \pi + \frac{1}{4}\left( 0 + 0 \right) .....................\left[ \sin\left( - \pi \right) = - sin\pi = 0 \right]\]
\[ \Rightarrow 2I = \frac{\pi}{2}\]
\[ \Rightarrow I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate :
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
Evaluate: `int x/(x^2 + 1)"d"x`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`