हिंदी

Evaluate Each of the Following Integral: ∫ π 2 − π 2 Cos 2 X 1 + E X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]
योग

उत्तर

\[\text{Let I} =\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx.................\left(1\right)\]

Then,

\[I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 \left[ \frac{\pi}{2} + \left( - \frac{\pi}{2} \right) - x \right]}{1 + e^\left[ \frac{\pi}{2} + \left( - \frac{\pi}{2} \right) - x \right]}dx ........................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 \left( - x \right)}{1 + e^{- x}}dx\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{e^x \cos^2 x}{e^x + 1}dx .................... \left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{\cos^2 x}{1 + e^x} + \frac{e^x \cos^2 x}{1 + e^x} \right)dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x\left( 1 + e^x \right)}{1 + e^x}dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos^2 xdx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{1 + \cos2x}{2} \right)dx\]

\[\Rightarrow 2I = \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx + \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2xdx\]
\[ \Rightarrow 2I = \left.\frac{1}{2} \times x\right|_{- \frac{\pi}{2}}^\frac{\pi}{2} + \frac{1}{2} \left.\times \frac{\sin2x}{2}\right|_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ \Rightarrow 2I = \frac{1}{2}\left[ \frac{\pi}{2} - \left( - \frac{\pi}{2} \right) \right] + \frac{1}{4}\left[ \sin\pi - \sin\left( - \pi \right) \right]\]
\[ \Rightarrow 2I = \frac{1}{2} \times \pi + \frac{1}{4}\left( 0 + 0 \right) .....................\left[ \sin\left( - \pi \right) = - sin\pi = 0 \right]\]
\[ \Rightarrow 2I = \frac{\pi}{2}\]
\[ \Rightarrow I = \frac{\pi}{4}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.4 [पृष्ठ ६१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.4 | Q 8 | पृष्ठ ६१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.


If `f(x) = int_0^pi t sin  t  dt`, then f' (x) is ______.


`int 1/(1 + cos x)` dx = _____

A) `tan(x/2) + c`

B) `2 tan (x/2) + c`

C) -`cot (x/2) + c`

D) -2 `cot (x/2)` + c


Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`


Evaluate of the following integral: 

\[\int x^\frac{5}{4} dx\]

Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| x + 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


Find: `int_  (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is


Evaluate: `int x/(x^2 + 1)"d"x`


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×