Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\int_{- 6}^6 \left| x + 2 \right| d x\]
\[\text{We know that}, \left| x + 2 \right| = \begin{cases} - \left( x + 2 \right) &,& - 6 \leq x \leq - 2\\x + 2&,& - 2 < x \leq 6\end{cases}\]
\[ \therefore I = \int_{- 6}^6 \left| x + 2 \right| d x\]
\[ \Rightarrow I = \int_{- 6}^{- 2} - \left( x + 2 \right) dx + \int_{- 2}^6 \left( x + 2 \right) dx\]
\[ \Rightarrow I = \left[ \frac{- x^2}{2} - 2x \right]_{- 6}^{- 2} + \left[ \frac{x^2}{2} + 2x \right]_{- 2}^6 \]
\[ \Rightarrow I = - 2 + 4 + 18 - 12 + 18 + 12 - 2 + 4\]
\[ \Rightarrow I = 40\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
Find: `int (dx)/sqrt(3 - 2x - x^2)`
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.