हिंदी

Evaluate: π / 2 ∫ 0 X Sin X Cos X Sin 4 X + Cos 4 X D X . - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .

उत्तर

\[Let I = \int_0^\frac{\pi}{2} \frac{x\sin x \cos x}{\sin^4 x + \cos^4 x}dx . \]

\[\text{ Then we have }: \]

\[I = \int_0^\frac{\pi}{2} \frac{\left( \frac{\pi}{2} - x \right)\sin\left( \frac{\pi}{2} - x \right) \cos\left( \frac{\pi}{2} - x \right)}{\sin^4 \left( \frac{\pi}{2} - x \right) + \cos^4 \left( \frac{\pi}{2} - x \right)}dx\]

\[\Rightarrow I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x}dx - \int_0^\frac{\pi}{2} \frac{x\sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\Rightarrow I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x}dx - I\]

\[\Rightarrow 2I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x}dx\]

 Dividing the numerator and the denominator of RHS by cos4x, we have:

\[2I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\tan x se c^2 x}{1 + \tan^4 x} dx\]

\[\Rightarrow 2I = \frac{\pi}{4} \int_0^\frac{\pi}{2} \frac{2\tan x se c^2 x}{1 + \tan^4 x} dx\]

\[\Rightarrow 2I = \frac{\pi}{4} \int_0^\frac{\pi}{2} \frac{2\tan x se c^2 x}{1 + \left( \tan^2 x \right)^2} dx\]

\[\text { Put} t = \tan^2 x\]

\[ \Rightarrow dt = 2\tan x se c^2 x dx\]

\[\text { When } x \to 0, t \to 0\]

\[\text { When } x \to \frac{\pi}{2}, t \to \infty\]

\[\therefore 2I = \frac{\pi}{4} \int_0^\infty \frac{1}{1 + t^2} dt\]

\[\Rightarrow 2I = \frac{\pi}{4} \left[ \tan^{- 1} \left( t \right) \right]_0^\infty \]

\[ \Rightarrow 2I = \frac{\pi}{4}\left[ \tan^{- 1} \left( \infty \right) - \tan^{- 1} \left( 0 \right) \right]\]

\[ \Rightarrow 2I = \frac{\pi}{4}\left[ \frac{\pi}{2} \right] = \frac{\pi^2}{8}\]

\[ \Rightarrow I = \frac{\pi^2}{16}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) Delhi Set 3

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


 

Evaluate `int_(-1)^2|x^3-x|dx`

 

Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.


`int 1/(1 + cos x)` dx = _____

A) `tan(x/2) + c`

B) `2 tan (x/2) + c`

C) -`cot (x/2) + c`

D) -2 `cot (x/2)` + c


Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`


Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate: 

\[\int\frac{2 \cos^2 x - \cos 2x}{\cos^2 x}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]

\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


`int_0^1 x(1 - x)^5 "dx" =` ______.


`int_0^(pi4) sec^4x  "d"x` = ______.


`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×