Advertisements
Advertisements
प्रश्न
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
उत्तर
\[Let I = \int_0^\frac{\pi}{2} \frac{x\sin x \cos x}{\sin^4 x + \cos^4 x}dx . \]
\[\text{ Then we have }: \]
\[I = \int_0^\frac{\pi}{2} \frac{\left( \frac{\pi}{2} - x \right)\sin\left( \frac{\pi}{2} - x \right) \cos\left( \frac{\pi}{2} - x \right)}{\sin^4 \left( \frac{\pi}{2} - x \right) + \cos^4 \left( \frac{\pi}{2} - x \right)}dx\]
\[\Rightarrow I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x}dx - \int_0^\frac{\pi}{2} \frac{x\sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\Rightarrow I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x}dx - I\]
\[\Rightarrow 2I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x}dx\]
Dividing the numerator and the denominator of RHS by cos4x, we have:
\[2I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\tan x se c^2 x}{1 + \tan^4 x} dx\]
\[\Rightarrow 2I = \frac{\pi}{4} \int_0^\frac{\pi}{2} \frac{2\tan x se c^2 x}{1 + \tan^4 x} dx\]
\[\Rightarrow 2I = \frac{\pi}{4} \int_0^\frac{\pi}{2} \frac{2\tan x se c^2 x}{1 + \left( \tan^2 x \right)^2} dx\]
\[\text { Put} t = \tan^2 x\]
\[ \Rightarrow dt = 2\tan x se c^2 x dx\]
\[\text { When } x \to 0, t \to 0\]
\[\text { When } x \to \frac{\pi}{2}, t \to \infty\]
\[\therefore 2I = \frac{\pi}{4} \int_0^\infty \frac{1}{1 + t^2} dt\]
\[\Rightarrow 2I = \frac{\pi}{4} \left[ \tan^{- 1} \left( t \right) \right]_0^\infty \]
\[ \Rightarrow 2I = \frac{\pi}{4}\left[ \tan^{- 1} \left( \infty \right) - \tan^{- 1} \left( 0 \right) \right]\]
\[ \Rightarrow 2I = \frac{\pi}{4}\left[ \frac{\pi}{2} \right] = \frac{\pi^2}{8}\]
\[ \Rightarrow I = \frac{\pi^2}{16}\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
`int_0^1 x(1 - x)^5 "dx" =` ______.
`int_0^(pi4) sec^4x "d"x` = ______.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.