हिंदी

Find : ∫ E 2 X Sin ( 3 X + 1 ) D X . - Mathematics

Advertisements
Advertisements

प्रश्न

Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .

उत्तर

Let I =  \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] Use integration by parts,

\[\int u v dx = u\int v dx - \int\left[ \frac{du}{dx}\int v dx \right]dx\]

Here,

\[u = \sin \left( 3x + 1 \right) and v = e^{2x}\]

Therefore,

\[I = \sin \left( 3x + 1 \right)\int e^{2x} dx - \int\left[ \frac{d\left( \sin\left( 3x + 1 \right) \right)}{dx}\int e^{2x} dx \right]dx\]

\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{2}\int e^{2x} \cos\left( 3x + 1 \right) dx\]

\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{2}\left[ \cos\left( 3x + 1 \right)\int e^{2x} dx - \int\left\{ \frac{d\left( \cos\left( 3x + 1 \right) \right)}{dx}\int e^{2x} dx \right\} \right] \left[ \text {  Integration by parts again } \right]\]

\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{2}\left[ \frac{\cos\left( 3x + 1 \right) e^{2x}}{2} - \int\left\{ \frac{- 3}{2} e^{2x} \sin\left( 3x + 1 \right)dx \right\} \right]\]

\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} - \frac{9}{4}\int e^{2x} \sin\left( 3x + 1 \right)dx\]

\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} - \frac{9}{4}I\]

\[I + \frac{9}{4}I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} \]

\[I = \frac{4}{13}\left[ \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} \right] + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) Foreign Set 3

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate: `int1/(xlogxlog(logx))dx`


Evaluate : `int1/(3+5cosx)dx`


 

Evaluate `int_(-1)^2|x^3-x|dx`

 

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate: 

\[\int\frac{2 \cos^2 x - \cos 2x}{\cos^2 x}dx\]

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{2\pi} \left| \sin x \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


`int_0^1 x(1 - x)^5 "dx" =` ______.


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is


`int_0^1 x^2e^x dx` = ______.


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×