Advertisements
Advertisements
प्रश्न
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
उत्तर
Let I = \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] Use integration by parts,
\[\int u v dx = u\int v dx - \int\left[ \frac{du}{dx}\int v dx \right]dx\]
Here,
\[u = \sin \left( 3x + 1 \right) and v = e^{2x}\]
Therefore,
\[I = \sin \left( 3x + 1 \right)\int e^{2x} dx - \int\left[ \frac{d\left( \sin\left( 3x + 1 \right) \right)}{dx}\int e^{2x} dx \right]dx\]
\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{2}\int e^{2x} \cos\left( 3x + 1 \right) dx\]
\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{2}\left[ \cos\left( 3x + 1 \right)\int e^{2x} dx - \int\left\{ \frac{d\left( \cos\left( 3x + 1 \right) \right)}{dx}\int e^{2x} dx \right\} \right] \left[ \text { Integration by parts again } \right]\]
\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{2}\left[ \frac{\cos\left( 3x + 1 \right) e^{2x}}{2} - \int\left\{ \frac{- 3}{2} e^{2x} \sin\left( 3x + 1 \right)dx \right\} \right]\]
\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} - \frac{9}{4}\int e^{2x} \sin\left( 3x + 1 \right)dx\]
\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} - \frac{9}{4}I\]
\[I + \frac{9}{4}I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} \]
\[I = \frac{4}{13}\left[ \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} \right] + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate : `int1/(3+5cosx)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^1 x(1 - x)^5 "dx" =` ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
`int_0^1 x^2e^x dx` = ______.
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.