Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\text{Let I }=\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]
Suppose
Now,
\[f\left( 2\pi - x \right) = \sin^{100} \left( 2\pi - x \right) \cos^{101} \left( 2\pi - x \right) = \left( - \sin x \right)^{100} \left( \cos x \right)^{101} = \sin^{100} x \cos^{101} x = f\left( x \right)\]
\[\therefore I = \int_0^{2\pi} \sin^{100} x \cos^{101} xdx = 2 \int_0^\pi \sin^{100} x \cos^{101} xdx ...................\left[ \int_0^{2a} f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( 2a - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( 2a - x \right) = - f\left( x \right)\end{cases} \right]\]
Again,
\[f\left( \pi - x \right) = \sin^{100} \left( \pi - x \right) \cos^{101} \left( \pi - x \right) = \left( \sin x \right)^{100} \left( - \cos x \right)^{101} = - \sin^{100} x \cos^{101} x = - f\left( x \right)\]
\[\therefore I = 2 \times 0 = 0 ...................\left[ \int_0^{2a} f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( 2a - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( 2a - x \right) = - f\left( x \right)\end{cases} \right]\]
APPEARS IN
संबंधित प्रश्न
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^1 x(1 - x)^5 "dx" =` ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Find: `int (dx)/sqrt(3 - 2x - x^2)`
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate: `int x/(x^2 + 1)"d"x`