हिंदी

Evaluate: ∫ 1 a X B X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]
योग

उत्तर

\[\int\frac{dx}{a^x b^x}\]
\[ = \int\left( a^{- x}  b^{- x} \right)dx\]
\[ = \frac{a^{- x} b^{- x}}{- \log_e     \left( ab \right)} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.01 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.01 | Q 4 | पृष्ठ ४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


 

find `∫_2^4 x/(x^2 + 1)dx`

 

Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


`int 1/(1 + cos x)` dx = _____

A) `tan(x/2) + c`

B) `2 tan (x/2) + c`

C) -`cot (x/2) + c`

D) -2 `cot (x/2)` + c


Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate: 

\[\int\frac{2 \cos^2 x - \cos 2x}{\cos^2 x}dx\]

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]

\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


Find: `int_  (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.


`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×