हिंदी

Evaluate ∫0(3/2) |x cosπx| dx - Mathematics

Advertisements
Advertisements

प्रश्न

 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

उत्तर

`int_0^(3/2)|xcospix|dx`

`0<x<1/2`

`0<pix<pi/2rArrcospix>0rArr(xcospix)>0`

                                 `|xcospix|=xcospix`

`1/2<x<3/2`

`pi/2<pix<(3pi)/2rArrcospix<0rArr(xcospix)<0`

                               `|xcospix|=-xcospix`

`I=int_0^(3/2)|xcospix|dx=int_0^(3/2)xcospix+int_(1/2)^(3/2)-(xcospix)`

`I=int_0^(1/2)xcospix-int_(1/2)^(3/2)xcospix`

`intx(cospix)=x(sinpix)/pi-int(sinpix)/pi`

                  `=x/pi(sinpix)+(cospix)/pi^2`

`I=[(x/pisinpix)+(cospix)/pi^2]_0^(1/2)-[(x/pisinpix)+(cospix)/pi^2]_(1/2)^(3/2)`

`=[1/pi((1/2)-0)+1/pi^2(0-1)]-[1/pi(3/2(-1)-1/2(1))+1/pi^2(0-0)]`

`=(1/(2pi)-1/pi^2)-((-2)/pi)`

`=(5/(2pi)-1/pi^2)`

`=((5pi-2)/(2pi^2))`

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) All India Set 2 C

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate: `int1/(xlogxlog(logx))dx`


Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


`int 1/(1 + cos x)` dx = _____

A) `tan(x/2) + c`

B) `2 tan (x/2) + c`

C) -`cot (x/2) + c`

D) -2 `cot (x/2)` + c


Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`


Evaluate of the following integral:

(i)  \[\int x^4 dx\]

 


Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate: 

\[\int\frac{2 \cos^2 x - \cos 2x}{\cos^2 x}dx\]

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_0^4 \left| x - 1 \right| dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×