Advertisements
Advertisements
प्रश्न
Evaluate `∫_0^(3/2)|x cosπx|dx`
उत्तर
`int_0^(3/2)|xcospix|dx`
`0<x<1/2`
`0<pix<pi/2rArrcospix>0rArr(xcospix)>0`
`|xcospix|=xcospix`
`1/2<x<3/2`
`pi/2<pix<(3pi)/2rArrcospix<0rArr(xcospix)<0`
`|xcospix|=-xcospix`
`I=int_0^(3/2)|xcospix|dx=int_0^(3/2)xcospix+int_(1/2)^(3/2)-(xcospix)`
`I=int_0^(1/2)xcospix-int_(1/2)^(3/2)xcospix`
`intx(cospix)=x(sinpix)/pi-int(sinpix)/pi`
`=x/pi(sinpix)+(cospix)/pi^2`
`I=[(x/pisinpix)+(cospix)/pi^2]_0^(1/2)-[(x/pisinpix)+(cospix)/pi^2]_(1/2)^(3/2)`
`=[1/pi((1/2)-0)+1/pi^2(0-1)]-[1/pi(3/2(-1)-1/2(1))+1/pi^2(0-0)]`
`=(1/(2pi)-1/pi^2)-((-2)/pi)`
`=(5/(2pi)-1/pi^2)`
`=((5pi-2)/(2pi^2))`
संबंधित प्रश्न
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate :
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`