हिंदी

Evaluate the Following Integral: ∫ π − π 2 X ( 1 + Sin X ) 1 + Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]
योग

उत्तर

\[\text{Let I }= \int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Then,
\[I = \int_{- \pi}^\pi \frac{2x}{1 + \cos^2 x}dx + \int_{- \pi}^\pi \frac{2x\sin x}{1 + \cos^2 x}dx\]
\[ = I_1 + I_2\]

Consider

\[f\left( x \right) = \frac{2x}{1 + \cos^2 x}\]

Now,

\[f\left( - x \right) = \frac{2\left( - x \right)}{1 + \cos^2 \left( \pi - x \right)} = - \frac{2x}{1 + \left( - \cos x \right)^2} = - \frac{2x}{1 + \cos^2 x} = - f\left( x \right)\]

\[\therefore I_1 = \int_{- \pi}^\pi \frac{2x}{1 + \cos^2 x}dx = 0 \left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]

Again, consider

\[g\left( x \right) = \frac{2x\sin x}{1 + \cos^2 x}\]

\[g\left( - x \right) = \frac{2\left( - x \right)\sin\left( - x \right)}{1 + \cos^2 \left( - x \right)} = \frac{2x\sin x}{1 + \cos^2 x} = g\left( x \right) \left[ \sin\left( - x \right) = - \sin x and \cos\left( - x \right) = \cos x \right]\]

\[\therefore I_2 = \int_{- \pi}^\pi \frac{2x\sin x}{1 + \cos^2 x}dx\]
\[ = 2 \times 2 \int_0^\pi \frac{x\sin x}{1 + \cos^2 x}dx ................\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]
\[ = 4 \int_0^\pi \frac{x\sin x}{1 + \cos^2 x}dx ..................(1)\]

Then, 

\[I_2 = 4 \int_0^\pi \frac{\left( \pi - x \right)\sin\left( \pi - x \right)}{1 + \cos^2 \left( \pi - x \right)}dx = 4 \int_0^\pi \frac{\left( \pi - x \right)\sin x}{1 + \cos^2 x}dx .................(2) \left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]

Adding (1) and (2), we get

\[2 I_2 = 4 \int_0^\pi \frac{\pi\sin x}{1 + \cos^2 x}dx\]
\[ \Rightarrow 2 I_2 = 4\pi \int_0^\pi \frac{\sin x}{1 + \cos^2 x}dx\]

Put cos x = z

\[\Rightarrow - \sin x\ dx = dz\]

When

\[x \to 0, z \to 1\]

When 

\[x \to \pi, z \to - 1\]

\[\therefore 2 I_2 = - 4\pi \int_1^{- 1} \frac{dz}{1 + z^2}\]
\[ \Rightarrow 2 I_2 = - 4\pi \times \tan^{- 1} z_1^{- 1} \]
\[ \Rightarrow 2 I_2 = - 4\pi\left[ \tan^{- 1} \left( - 1 \right) - \tan^{- 1} 1 \right]\]
\[ \Rightarrow 2 I_2 = - 4\pi\left( - \frac{\pi}{4} - \frac{\pi}{4} \right) = 2 \pi^2 \]
\[ \Rightarrow I_2 = \pi^2\]

\[\therefore I = I_1 + I_2 = 0 + \pi^2 = \pi^2\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.5 | Q 29 | पृष्ठ ९५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


Evaluate: `int1/(xlogxlog(logx))dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`


Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate:

\[\int\frac{e\log \sqrt{x}}{x}dx\]

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{\tan^7 x}{\tan^7 x + \cot^7 x}dx\]

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


`int_0^1 x(1 - x)^5 "dx" =` ______.


Find: `int (dx)/sqrt(3 - 2x - x^2)`


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×