Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\text{Let I }= \int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]
\[ = I_1 + I_2\]
Consider
Now,
\[f\left( - x \right) = \frac{2\left( - x \right)}{1 + \cos^2 \left( \pi - x \right)} = - \frac{2x}{1 + \left( - \cos x \right)^2} = - \frac{2x}{1 + \cos^2 x} = - f\left( x \right)\]
Again, consider
\[g\left( - x \right) = \frac{2\left( - x \right)\sin\left( - x \right)}{1 + \cos^2 \left( - x \right)} = \frac{2x\sin x}{1 + \cos^2 x} = g\left( x \right) \left[ \sin\left( - x \right) = - \sin x and \cos\left( - x \right) = \cos x \right]\]
\[\therefore I_2 = \int_{- \pi}^\pi \frac{2x\sin x}{1 + \cos^2 x}dx\]
\[ = 2 \times 2 \int_0^\pi \frac{x\sin x}{1 + \cos^2 x}dx ................\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]
\[ = 4 \int_0^\pi \frac{x\sin x}{1 + \cos^2 x}dx ..................(1)\]
Then,
\[I_2 = 4 \int_0^\pi \frac{\left( \pi - x \right)\sin\left( \pi - x \right)}{1 + \cos^2 \left( \pi - x \right)}dx = 4 \int_0^\pi \frac{\left( \pi - x \right)\sin x}{1 + \cos^2 x}dx .................(2) \left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
Adding (1) and (2), we get
\[2 I_2 = 4 \int_0^\pi \frac{\pi\sin x}{1 + \cos^2 x}dx\]
\[ \Rightarrow 2 I_2 = 4\pi \int_0^\pi \frac{\sin x}{1 + \cos^2 x}dx\]
Put cos x = z
When
When
\[\therefore 2 I_2 = - 4\pi \int_1^{- 1} \frac{dz}{1 + z^2}\]
\[ \Rightarrow 2 I_2 = - 4\pi \times \tan^{- 1} z_1^{- 1} \]
\[ \Rightarrow 2 I_2 = - 4\pi\left[ \tan^{- 1} \left( - 1 \right) - \tan^{- 1} 1 \right]\]
\[ \Rightarrow 2 I_2 = - 4\pi\left( - \frac{\pi}{4} - \frac{\pi}{4} \right) = 2 \pi^2 \]
\[ \Rightarrow I_2 = \pi^2\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_0^1 x(1 - x)^5 "dx" =` ______.
Find: `int (dx)/sqrt(3 - 2x - x^2)`
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.