Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\text{Let I} = \int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]
Consider
\[f\left( - \theta \right) = \log\left( \frac{a - \sin\left( - \theta \right)}{a + \sin\left( - \theta \right)} \right)\]
\[ = \log\left( \frac{a + \sin\theta}{a - \sin\theta} \right) ............\left[ \sin\left( - x \right) = - \sin x \right]\]
\[ = \log \left( \frac{a - \sin\theta}{a + \sin\theta} \right)^{- 1} \]
\[ = - \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right) ..............\left[ \log a^b = b\log a \right]\]
\[ = - f\left( \theta \right)\]
\[\therefore f\left( - \theta \right) = - f\left( \theta \right)\]
\[ \Rightarrow I = \int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta = 0 .................\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]
APPEARS IN
संबंधित प्रश्न
If f(2a − x) = −f(x), prove that
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
`int_0^(2a)f(x)dx`
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.