हिंदी

Π ∫ 0 X 1 + Cos α Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]

योग

उत्तर

\[We have, \]
\[I = \int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx . ....... . . . \left( 1 \right)\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi - x}{1 + \cos \alpha \sin \left( \pi - x \right)} dx ...............\left( \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right)\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi - x}{1 + \cos \alpha \sin x} dx . ....... . . . \left( 2 \right)\]
Adding (1) and (2), we get

\[2I = \int\limits_0^\pi \frac{\pi}{1 + \cos \alpha \sin x} dx \]
\[ \Rightarrow I = \frac{\pi}{2} \int\limits_0^\pi \frac{1}{1 + \cos \alpha \sin x} dx \]
\[ = \frac{\pi}{2} \int\limits_0^\pi \frac{1}{1 + \cos \alpha \frac{2\tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} dx \]
\[ = \frac{\pi}{2} \int\limits_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + \cos \alpha 2\tan \frac{x}{2}} dx\]
\[\text{Putting }\tan\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]
\[\text{When }x \to 0 ; t \to 0\]
\[\text{and }x \to \pi ; t \to \infty \]
Now, integral becomes

\[I = \pi \int\limits_0^\infty \frac{dt}{1 + t^2 + 2t \cos \alpha} \]

\[ = \pi \int\limits_0^\infty \frac{dt}{\left( t + \cos \alpha \right)^2 + 1 - \cos^2 \alpha}\]

\[ = \pi \int\limits_0^\infty \frac{dt}{\left( t + \cos \alpha \right)^2 + \sin^2 \alpha}\]

\[ = \pi \left[ \frac{1}{\sin \alpha} \tan^{- 1} \frac{t + \cos \alpha}{\sin \alpha} \right]_0^\infty \]

\[ = \frac{\pi}{\sin \alpha} \left[ \tan^{- 1} \frac{t + \cos \alpha}{\sin \alpha} \right]_0^\infty \]

\[ = \frac{\pi}{\sin \alpha}\left[ \frac{\pi}{2} - \tan^{- 1} \left( \cot \alpha \right) \right]\]

\[ = \frac{\pi}{\sin \alpha}\left[ \frac{\pi}{2} - \tan^{- 1} \left\{ \tan\left( \frac{\pi}{2} - \alpha \right) \right\} \right]\]

\[ = \frac{\pi}{\sin \alpha}\left[ \frac{\pi}{2} - \left( \frac{\pi}{2} - \alpha \right) \right]\]

\[ = \frac{\pi\alpha}{\sin \alpha}\]

\[\]

\[\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 46 | पृष्ठ १२२

संबंधित प्रश्न

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is

If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^4 x dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


Evaluate the following:

Γ(4)


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×