Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
उत्तर
\[We have, \]
\[I = \int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx . ....... . . . \left( 1 \right)\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi - x}{1 + \cos \alpha \sin \left( \pi - x \right)} dx ...............\left( \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right)\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi - x}{1 + \cos \alpha \sin x} dx . ....... . . . \left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int\limits_0^\pi \frac{\pi}{1 + \cos \alpha \sin x} dx \]
\[ \Rightarrow I = \frac{\pi}{2} \int\limits_0^\pi \frac{1}{1 + \cos \alpha \sin x} dx \]
\[ = \frac{\pi}{2} \int\limits_0^\pi \frac{1}{1 + \cos \alpha \frac{2\tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} dx \]
\[ = \frac{\pi}{2} \int\limits_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + \cos \alpha 2\tan \frac{x}{2}} dx\]
\[\text{Putting }\tan\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]
\[\text{When }x \to 0 ; t \to 0\]
\[\text{and }x \to \pi ; t \to \infty \]
Now, integral becomes
\[I = \pi \int\limits_0^\infty \frac{dt}{1 + t^2 + 2t \cos \alpha} \]
\[ = \pi \int\limits_0^\infty \frac{dt}{\left( t + \cos \alpha \right)^2 + 1 - \cos^2 \alpha}\]
\[ = \pi \int\limits_0^\infty \frac{dt}{\left( t + \cos \alpha \right)^2 + \sin^2 \alpha}\]
\[ = \pi \left[ \frac{1}{\sin \alpha} \tan^{- 1} \frac{t + \cos \alpha}{\sin \alpha} \right]_0^\infty \]
\[ = \frac{\pi}{\sin \alpha} \left[ \tan^{- 1} \frac{t + \cos \alpha}{\sin \alpha} \right]_0^\infty \]
\[ = \frac{\pi}{\sin \alpha}\left[ \frac{\pi}{2} - \tan^{- 1} \left( \cot \alpha \right) \right]\]
\[ = \frac{\pi}{\sin \alpha}\left[ \frac{\pi}{2} - \tan^{- 1} \left\{ \tan\left( \frac{\pi}{2} - \alpha \right) \right\} \right]\]
\[ = \frac{\pi}{\sin \alpha}\left[ \frac{\pi}{2} - \left( \frac{\pi}{2} - \alpha \right) \right]\]
\[ = \frac{\pi\alpha}{\sin \alpha}\]
\[\]
\[\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^4 x dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
Γ(4)
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:
The value of `int_2^3 x/(x^2 + 1)`dx is ______.