Advertisements
Advertisements
Question
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
Solution
\[We have, \]
\[I = \int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx . ....... . . . \left( 1 \right)\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi - x}{1 + \cos \alpha \sin \left( \pi - x \right)} dx ...............\left( \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right)\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi - x}{1 + \cos \alpha \sin x} dx . ....... . . . \left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int\limits_0^\pi \frac{\pi}{1 + \cos \alpha \sin x} dx \]
\[ \Rightarrow I = \frac{\pi}{2} \int\limits_0^\pi \frac{1}{1 + \cos \alpha \sin x} dx \]
\[ = \frac{\pi}{2} \int\limits_0^\pi \frac{1}{1 + \cos \alpha \frac{2\tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} dx \]
\[ = \frac{\pi}{2} \int\limits_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + \cos \alpha 2\tan \frac{x}{2}} dx\]
\[\text{Putting }\tan\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]
\[\text{When }x \to 0 ; t \to 0\]
\[\text{and }x \to \pi ; t \to \infty \]
Now, integral becomes
\[I = \pi \int\limits_0^\infty \frac{dt}{1 + t^2 + 2t \cos \alpha} \]
\[ = \pi \int\limits_0^\infty \frac{dt}{\left( t + \cos \alpha \right)^2 + 1 - \cos^2 \alpha}\]
\[ = \pi \int\limits_0^\infty \frac{dt}{\left( t + \cos \alpha \right)^2 + \sin^2 \alpha}\]
\[ = \pi \left[ \frac{1}{\sin \alpha} \tan^{- 1} \frac{t + \cos \alpha}{\sin \alpha} \right]_0^\infty \]
\[ = \frac{\pi}{\sin \alpha} \left[ \tan^{- 1} \frac{t + \cos \alpha}{\sin \alpha} \right]_0^\infty \]
\[ = \frac{\pi}{\sin \alpha}\left[ \frac{\pi}{2} - \tan^{- 1} \left( \cot \alpha \right) \right]\]
\[ = \frac{\pi}{\sin \alpha}\left[ \frac{\pi}{2} - \tan^{- 1} \left\{ \tan\left( \frac{\pi}{2} - \alpha \right) \right\} \right]\]
\[ = \frac{\pi}{\sin \alpha}\left[ \frac{\pi}{2} - \left( \frac{\pi}{2} - \alpha \right) \right]\]
\[ = \frac{\pi\alpha}{\sin \alpha}\]
\[\]
\[\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate each of the following integral:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.