Advertisements
Advertisements
Question
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
Solution
\[\int_\frac{- \pi}{2}^\frac{\pi}{2} \sin^9 x d x\]
\[\text{Let }f(x) = \sin^9 x\]
\[\text{Consider, }f(-x) = \sin^9 \left( - x \right) = - \sin^9 x = - f\left( x \right)\]
Thus f(x) is an odd function
Therefore,
\[ \int_\frac{- \pi}{2}^\frac{\pi}{2} \sin^9 x d x = 0\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.